
View integration

Herman Balsters, Maarten Fokkinga, and Maurice van Keulen

University of Twente, Dept INF

{balsters,fokkinga}@cs.utwente.nl, M.van.Keulen@bigfoot.com

Working draft — Version of December 10, 1999

Problem statement Suppose that we are to build one information system (database, say)
for several users that each have their own view of the world. The idea is to integrate the
views of all individual users into one view (which is satisfactory for all users), and build the
information system for that view. The problem that we are faced with is this:

What is the/a formal definition of view integration that serves this purpose?

We tackle this question, dealing with integration on the schema level as wel as on the
world/extension level, and we will make explicit various assumptions. It remains to be inves-
tigated whether our notion of view integration (with the motivation above) is also suitable
for federated databases and datawharehousing.

Preliminaries As a starting point we assume that a view V consists of an ER schema
S together with some constraints C ; thus V = (S ,C). (Part of C may have a graphical
notation, this is particularly true for the so-called cardinality or multiplicity constraints.)
We assume that it is clear that, and how, an ER schema S defines a logical language L(S)
(consisting of terms and predicates, collectively called expressions). For example, L(S) is the
language of set expressions (the Z notation) with the entity and relation names of S as given
set names, where the elements of these sets have the attributes as given in the schema. The
constraint C does not have an influence on L(S). A query q is a term in the language L(S).
We do not consider updates.

A world for V = (S ,C) is on the hand a mathematical structure w consisting of (at least)
a so-called entity extension and relation extension for each entity and relation type mentioned
in S , and on the other hand an interpretation I of L(S) into w . We use the conventional
notation “w |= φ” to denote the truth value of predicate φ when interpreted into w (thereby
not mentioning the interpretation I explicitly). An instance or materialisation or model of V

is a world w for V that satisfies all constraints of V , that is, w |= C . The set of all instances

of V is denoted ÆV �, so ÆV � = {w : world for V | w |= C}.
If w is a world for V = (S ,C), then we write Lw (S) for the language that is obtained

from L(S) by adding constants for the elements of the sets in w . From now on we consider
queries and answers to be terms in the language Lw (S), where an answer is a term built
entirely from constants. To express the semantics of a query, one can consider w |= q=a for
various answers a. However, since ‘q=a’ is a predicate, we can abstract away from queries
and answers (which are terms) and consider predicates φ only. This generalisation is not
too far, since arbitray predicates can already be represented by queries (if the language is

1

sufficiently expressive), via the mapping φ 7→ {1 | φ}: the answer set is non-empty if and only
if the predicate φ holds.

Assumption Our investigation does not consider the important, hard, practical prob-
lem of removing conflicts and anomalies between the two views: inconsistencies, synonyms,
homonyms, and so on. So, when integrating two views V1 and V2, we assume that the same
names have the same semantics, both intuitively and formally. Specifically, if E is an entity
type in both views, then in each world w for V1 (not necessarily instance of V1) we have that
the entity extension for E in w is also the entity extension for E in some world for V2, and
conversely.

View integration Our first tentative definition for view integration reads as follows. View
V is, intuitively, the integration of views V1 and V2 if, firstly, both V1 and V2 can be mapped
into V without loss of information, and secondly, if another V ′ has this property too, then V

in turn can be mapped into V ′ without loss of information. Writing ¹ for “can be mapped,
without loss of information, into”, the tentative definition reads formally:

V1 ¹ V ∧ V2 ¹ V ∧ (∀V ′ | V1 ¹ V ′ ∧ V2 ¹ V ′ • V ¹ V ′)

that is, V is the least upper bound of V1 and V2 wrt ¹

In order for this definition to make sense, we should provide a definition for ¹ and prove that
‘the least upper bound’ exists. The definition is given below; I doubt whether lub’s exists. . .

Now we make the following assumption (leading to a relaxation of the definition of view
integration). In practice, a view is used to express a part of the world formally. So, inherently,
the user knows that the world is larger than just the part he is interested in. Therefore, the
user will (must!) consider any upperbound V ′ of his view to be as good as the view V he has
in mind, since view V can be mapped without loss of information into view V ′. Consequently,
we may relax the proposed definition somewhat:

view V is an (rather than the) integration of V1 and V2 if: V1 ¹ V ∧ V2 ¹ V .

In this case, there is no need for lub’s to exist.

Regarding relation ¹, we propose to define V ¹ V ′ (“V can be mapped into V ′ without loss
of information”) as follows:

there exists a (type-preserving) function f mapping L(S) into L(S ′), and mapping ÆV �
into ÆV ′�, such that

(*) for all instances w ∈ ÆV � and predicates φ in Lw (S), w |= φ ⇒ f (w) |= f (φ).

[Consequently, we have f (w) |= f (C) ∧ C ′.]

Function f can be very wild: it may do renaming, double all numbers, add superflous at-
tributes, remove derivable attributes, replace relations by entities and conversely, and so on.
What matters is that f also translates all observations φ while preserving the meaning. When
an application has been built on view V , and later is forced to use V ′, then it should invoke
f so as to translate everything to the new view.

Note: should ‘⇒’ in (*) be replaced by ‘⇔’?

2

Integrating materialisations Above we have defined the integration of two views, imply-
ing that each view instance on its own can be transformed into an instance of the integrated
view, without loss of information. Now, we also need to say how the instances of the the two
views jointly can be mapped into the integrated view. This is needed to “fill the database”
according to the world conceptions of both users jointly. In doing so, it may happen that
valid predicates (e.g., the constraint!) of a given instance fail to be valid in the integrated
instance: indeed, the world changes, and some information loss may occur.

Here are two proposals:

Let V be an/the integration of V1 and V2, say via f1 and f2, respectively.
Then, for any w1 ∈ ÆV1� and w2 ∈ ÆV2�, take

w = f1(w1) ∪ f2(w2), or

w = ‘natural full outer join’ of f1(w1) and f2(w2)

Here, the union ∪ is meant to denote union of ‘equally named’ entity extensions in the two
worlds, union of ‘equally named’ relation extensions of the two worlds, and incorporation of
all the extensions of the two worlds. Likewise, the natural full outer join has to be taken per
relation. A proper formalisation requires more detail about the ER schemas S , the induced
language L(S) and the L(S)-related mathematical structures w . Futhermore, with the join-
version, partiality (null values) are going to play a role, and that might complicate matters a
lot.

Note also that “the integrated instance” is not determined uniquely: there may be several
mappings f1 for V1 ¹ V , and several mappings f2 for V2 ¹ V .

Theorem: Let V be an/the integration of V1 and V2, say via f1 and f2, respectively. Let
w1 ∈ ÆV1� and w2 ∈ ÆV2�, and w defined as above. Then, even though w1 |= f1(C1), it is not
necessarily true that w |= f1(C1).

In other words, relaxation of constraints is, in general, unavoidable when integrating ma-
terialisations. Even though each user on his own can transform his view and materialisation
into V , they cannot do so jointly without making concessions to each other: some loss of
information may occur!

Still to be investigated Here are some points for further research.

About the definition of ¹:

1. Is injectivety of f a necessary and sufficient condition for (*)? Remember that a function
is injective if and only if it has an inverse (partial function).

2. Under what condition does ‘⇔’ hold in (*) instead of only ‘⇒’?

3. It seems reasonable to require that the language mapping part of f is a homomorphism,
that is, the image of a composed expression is built from the images from the constituent
parts. In particular, it is very reasonable to require f to be a homomorphism for the
logical operations: f (φ ∧ ψ) = f (φ) ∧ f (ψ), and so on.

About integration of materialisations:

3

4. What are the weakest, additional, constraints for views V1 and V2, such that material-
isation integration does preserve the entire constraint?

5. Let V be an/the integration of V1 and V2, say via f1 and f2, respectively. Let w1 ∈ ÆV1�
and w2 ∈ ÆV2�, and w defined as above (in particular, via the join-method). Is it true
that w |= f1(C1) ∨ f2(C2)? What can we say when C1 and C2 are tuple constraints.
There seems to be no stronger, true property of f1(C1) and f2(C2) for class constraints
C1 and C2. A proper fomalisation requires to introduce structure in the language, and
distinguish between tuple predicates and class predicates.

6. What is the “smallest” world that can be considered an integration of w1 and w2? The
one in the second alternative (in the definition of ‘integrating materialisations’)?

About the applicability

7. What about updates?

8. What about federated databases, and datawarehousing?

Miscellanea

9. Make ‘world’ into a synonym for ‘instance, materialisation, model’, and use another
word for what currently is called ‘world’.

10. Work out a (surprising) example.

11. The references below need to be read and compared with our approach.

References

[1] S.S. Chawathe, H. Garcia-Molina, and J. Widom. A toolkit for constraint management
in heterogeneous systems. In 12th International Conference on Data Engineering, New

Orleans, Montvale, NJ, 1996. IEEE Press.

[2] M.P. Reddy, B.E. Prasad, and A. Gupta. Formulating global integrity constraints during
derivation of global schema. Data and Knowledge Engineering, 16:241–268, 1995.

[3] Mark Vermeer. Semantic Interoperability for Legacy Databases. PhD thesis, University of
Twente, Enschede, Netherlands, 1997.

4

