
Math. Struct. in Comp. Science (1993), vol. 11, pp. 1–000 Copyright c© Cambridge University Press

Datatype Laws without Signatures

M a a r t e n M. F o k k i n g a †

University of Twente, dept. INF, P.O. Box 217, 7500 AE Enschede, The Netherlands
e-mail: fokkinga@cs.utwente.nl

Received 1991

Using the well-known categorical notion of ‘functor’ one may define the concept of

datatype (algebra) without being forced to introduce a signature, that is, names and

typings for the individual sorts (types) and operations involved. This has proved to be

advantageous for those theory developments where one is not interested in the syntactic

appearance of an algebra.

The categorical notion of ‘transformer’ developed in this paper allows the same approach

to laws: without using signatures one can define the concept of law for datatypes (lawful

algebras), and investigate the equational specification of datatypes in a syntax-free way.

A transformer is a special kind of functor and also a natural transformation on the level

of dialgebras. Transformers are quite expressive, satisfy several closure properties, and

are related to naturality and Wadler’s Theorems For Free. In fact, any colimit is an

initial lawful algebra.

1991 CR Classification System: D.1.1, D.3.3, F.3.2-3.

1980 Mathematics Subject Classification: 18A05, 69D11, 69D33, 69F32, 69F33.

Key Words and Phrases: datatype, algebra, signature, equational specification, category,

functor, transformer.

A. Introduction

1 The problem. Most mathematical formalisations of the intuitive notion of ‘datatype’

define that notion as a (many-sorted) algebra, possibly provided with some (conditional)

equations, which we call ‘laws’. Such algebras themselves are often formalised with help

of the notion of ‘signature’ or, more categorically and slightly more abstract, with the

notion of ‘sketch’ as described by Barr and Wells (1990). A signature gives the syntactic

appearance of the algebra; it gives the names of the sorts (types), the names and arities

of the operations and constants, and for each operation a syntactic indication of the

types of its arguments and result. No doubt, signatures are indispensable for large-scale

programming tasks, and a theory that deals with signatures may be quite useful. Such a

theory contains theorems on aspects of name-clashes, renaming, scope rules, persistency

and so on. However, sometimes we would like to be able to abstract from syntactic

aspects, for example when investigating the existence of certain kinds of algebras, or the

† Research partly done while at the CWI, Amsterdam.

Maarten M. Fokkinga 2

(semantic) relations between algebras. In fact, one should abstract from naming even

in the definition of such basic concepts as ‘homomorphism’. For the lawless case this is

possible indeed, thanks to the notion of functor. A functor characterises the type structure

of an algebra without naming the sort or any of the operations involved. Functors satisfy

just one or two very simple axioms, and —almost unbelievable— that is all that is needed

to develop a large body of useful theorems about algebras. The problem for which we

propose a solution, is the following.

Formalise the notion of ‘law’ (an equation or conditional equation for the operations

of an algebra) without introducing signatures, in particular naming and setting up a

syntax of terms.

Remarkably, in all texts where functors are used to characterise algebras, signatures (or

sketches) are introduced when it comes to laws. Clearly, this is a hindrance to theory

development, since it forces to deal with aspects (syntax) that should have been ab-

stracted from. About the use of functors to describe algebras Pierce (1991, remark 2.2.3)

explicitly says: “The framework has apparently never been extended to include algebras

with equations.”

2 The solution. We shall propose a categorical description of ‘law’ that avoids naming,

and is of the same simplicity as the definition of ‘functor’. To be specific, each of the two

terms of an equation shall be just a mapping T , from (di)algebras to (di)algebras, that

satisfies a particular so-called Transformer property; and such a T is called a trans-

former. A transformer is a special kind of functor, as well as a natural transformation.

There are several properties that transformers should have if the notion is to be of any

use. So, in Section D we show that transformers can be composed in various ways to form

transformers again, and are thus as expressive as the usual syntactic terms in conditional

equations. In addition, ‘laws’ are shown to be closed under conjunction. Moreover, in

that section we also explore the notion of transformer by showing some relation between

transformers and Wadler (1989)’s Theorems For Free theorem and naturality. In Section E

we give, for each law E , conditions under which the class Alg(F,E) of F -algebras

satisfying E is closed under subalgebras, product algebras and homomorphic images.

In Section F we give conditions under which Alg(F,E) has an initial object, the initial

F,E -algebra. In the same section we also show how to exploit a law E of the initial

F,E -algebra in programming. In Section G we show that any colimit is in fact an initial

F,E -algebra for some suitable choice of F and E . And finally, in Section H, we show the

transformers in action in the theory of equational specification of datatypes, by proving

two little theorems concerning the isomorphy of two differently specified datatypes.

The simplicity of the proofs of the claims above demonstrates the success of our for-

malisation.

B. Preliminaries

Apart from giving our notational conventions, we give in this section a brief description

of the formalisation of lawless algebras without signatures or sketches. A thorough dis-

cussion of this formalisation is given by Lehmann and Smith (1981), Malcolm (1990a;

Datatype Laws without Signatures 3

1990b), and Fokkinga (1992a; 1992b). Also Manes and Arbib (1986) and Pierce (1991)

give a brief description.

Nomenclature. Variables A,B, C vary over categories; a, b, c, . . . vary over objects; f ,

g, h, j, . . ., p, q, . . ., α, β, ϕ, ψ, . . . vary over morphisms (actually, ϕ, ψ, . . vary over

algebras and α, β over initial algebras); F , G, H , J , K, . . . vary over functors, U varies

over forgetful functors, and µF shall denote a distinguished initial F -algebra, assuming

it exists. The unit type, a fixed terminal object, is denoted 1 . We use x, y, z to denote

various entities. Formula x: a→A b means: x is a morphism in A with source a and

target b (srcAx = a and tgtAx = b). If † is a bifunctor, then F † G denotes the

monofunctor given by (F † G)x = Fx † Gx ; this will occur often with + and × for

† . The identity functor is denoted Id ; functor Id × Id is abbreviated to II , so that

IIx = x × x . A constant function mapping each argument onto x is denoted x . The

notation x is also used for the constant functor, mapping objects onto x and morphisms

onto idx .

If a category has been declared the default one, then we shall mostly suppress men-

tioning the category, certainly where it occurs as a subscript. Unless stated explicitly

otherwise, a morphism is a morphism in the default category, and similarly for objects,

source and target, and endofunctors. We denote composition of the default category (and

all the categories that inherit the composition of the default category) in diagrammatic

order: if x: a→ b and y: b→ c then x ; y: a→ c .

A typing of an expression is the indication of the source and target for each morphism

and functor in the expression, and the indication of the category for each entity, such

that the expression makes sense (e.g., targets and sources match in a composition).

There exists an algorithm that derives for an expression the weakest possible typing

requirements. Whenever we write an expression we tacitly assume that the (weakest)

typing requirements are met.

Formula η: F .→G means: η is a natural transformation from F to G .

Product and coproduct. In the examples and at several other places we assume that the

default category has products and coproducts. For products (in Set : cartesian products)

we use the notations ×, exl , exr , and ∆ (and exn,i for n -ary products in the examples).

Here exl/exr is the extraction of the left/right coordinate, and f ∆ g (pronounced: f

con g) is usually denoted 〈f, g〉 ; in Set we have (f ∆ g)x = (f x, g x) . For coproducts

(in Set : disjoint unions) we use the notation +, inl , inr , and ∇ (and inn,i in the

examples). The usual notation for f ∇ g (pronounced: f dis g) is [f, g] ; in Set we

have (f ∇ g)(inl x) = f x , and so on. So, the typing reads

f ∆ g : a→ b× c whenever f : a→ b and g: a→ c

f × g : a× b→ c× d whenever f : a→ c and g: b→ d

exl : a× b→ a

exr : a× b→ b

f ∇ g : a+ b→ c whenever f : a→ c and g: b→ c

Maarten M. Fokkinga 4

f + g : a+ b→ c+ d whenever f : a→ c and g: b→ d

inl : a→ a+ b

inr : b→ a+ b .

A program like if p then f else g can be modeled by p? ; f ∇ g , where p?: a→ a+ a

injects its argument into the left summand if p is true for it, and injects its argument

into the right summand otherwise.

We also use Exl ,Exr to denote the extraction functors from a product category to

the component categories.

3 Algebra. Fix a default category. Let F be an endofunctor. An F -algebra is: a mor-

phism ϕ: Fa→ a , for some object a called the carrier of ϕ .

4 Running example: trees. In this paper we use the well-known algebra of binary struc-

tures (abbreviated to trees) over the set nat as an example. We could be more general,

and consider trees over an arbitrary set a , but we wish to avoid the extra notions and

notation involved.

The default category is Set . The carrier of the algebra is the set tree that consists of

all finite binary structures with values from nat at the tips. There are three functions

nil , tip, and join :

nil : 1 → tree the nil structure

tip : nat → tree the tip former

join : II tree → tree the join operation, joining two structures .

The notation x join y will be used as an alternative for join(x, y) . Put

α = nil ∇ tip ∇ join

OneNatBin = 1 + nat + II ,

that is,

OneNatBin x = id 1 + idnat + x× x for each function x .

Then α: OneNatBin tree → tree , so α is an OneNatBin -algebra with carrier tree . We

shall see in paragraph 6 how to define the algebra formally. In paragraph 15 we shall see

that these binary structures are effectively lists, bags, or sets when operation join and

nil satisfy suitable laws.

Another OneNatBin -algebra is 0∇ 1∇ (+) ; this one has carrier nat . In the examples

to come we let e∇f∇⊕ be an arbitrary OneNatBin -algebra with carrier a ; so e: 1 → a,

f : nat → a, ⊕: II a→ a . (To be continued.)

5 Homomorphism, category of algebras, catamorphism. Fix a default category. Let F be

an endofunctor. Given F -algebras ϕ and ψ , a morphism f is an F -homomorphism

from ϕ to ψ , denoted f : ϕ →F ψ , if: ϕ ; f = Ff ; ψ . Further, Alg(F) is: the

category whose objects are F -algebras, whose morphisms are F -homomorphisms, and

whose composition and identities are inherited from the underlying default category;

thus →F is short for →Alg(F) . (Actually, Alg(F) , thus defined, is not a category but

Datatype Laws without Signatures 5

a pre-category, since the source and target of a morphism are not necessarily unique.

An easy fix is to take as the morphisms the triples (ϕ, f, ψ) such that f : ϕ →F ψ ,

defining composition and identities in the obvious way. To keep the notation light, we

shall however continue to write just the f components.)

An F -algebra α is initial in Alg(F) (or: is an initial F -algebra) if: for each F -

algebra ϕ there exists precisely one homomorphism from α to ϕ ; this one is denoted

([α → ϕ])F , or simply ([ϕ]) if F and α are understood, and it is called a catamorphism.

If an initial F -algebra exists, we let µF denote one. (All initial F -algebras are isomor-

phic.) We shall use α, β to denote initial algebras.

6 Example: trees continued. The algebra of trees may be defined by

nil ∇ tip ∇ join = µOneNatBin ,

or, equivalently,

α = µOneNatBin

nil = in3,0 ; α

tip = in3,1 ; α

join = in3,2 ; α .

Let furthermore ϕ = 0 ∇ 1 ∇ (+) . Then the statement size: α →OneNatBin ϕ is

equivalent to the three equations

nil ; size = 0

tip ; size = 1

join ; size = II size ; (+) .

In general such equations may have none, one, or more solutions for size . But since α

is initial, these equations have precisely one solution: the function that yields the number

of tips in the tree, and we can write

size = ([nil ∇ tip ∇ join → 0 ∇ 1 ∇ (+)]) ,

or simply size = ([0 ∇ 1 ∇ (+)]) .

The three equations show that the effect of applying size might be described as

a systematic substitution nil , tip, join := 0, 1, (+) , as suggested by the notation for

catamorphisms. For example, size((tip x) ++ nil) ++ (tip y)) = ((1 + 0) + 1) .

7 Calculation rules for catamorphisms. We list here some facts that follow from initiality

and that we need in the sequel. The existence of a mapping ([α →]) satisfying rule cata-

Charn is just the definition of the initiality of α ; the other rules follow quite easily. The

name ‘Charn’ is mnemonic for ‘Characterisation’, and the name ‘Self’ suggests

that ([ϕ]) itself is a solution for x in the left-hand side of rule Charn. Fix a default

category and an endofunctor F . Suppose α is an initial F -algebra, and ϕ is just an

F -algebra. Then, abbreviating ([α →]) to ([]) ,

x: α→F ϕ ≡ x = ([ϕ]) cata-Charn

Maarten M. Fokkinga 6

([ϕ]): α→F ϕ cata-Self

x: ϕ→F ψ ⇒ ([ϕ]) ; x = ([ψ]) cata-Fusion

Remember that x: ϕ →F ψ just means that x satisfies the equation ϕ ; x = Fx ; ψ .

Fokkinga (1992a) exploits such rules to prove various results from category theory, by

calculation rather than diagram chasing.

Many more calculation properties of algebras (and co-algebras), and their use in pro-

gram development, have been given by Malcolm (1990a), Fokkinga (1992b), and Meijer

et al. (1991).

8 Dialgebra. Dually to the notion of algebra we might define a G -co-algebra to be a

morphism ϕ: a → Ga , for some a called the carrier of ϕ . (The importance of co-

algebras for programming is illustrated by Hagino (1987), Malcolm (1990b), and Meijer

et al. (1991). We shall hardly consider co-algebras in this paper.)

There is also a generalisation that covers both algebras and co-algebras. A morphism

ϕ: Fa→ Ga , for some a , is called an F,G -dialgebra. For F,G -dialgebras ϕ and ψ , we

say f is an F,G -dialgebra homomorphism from ϕ to ψ , denoted f : ϕ→F,G ψ , if: ϕ ;

Gf = Ff ; ψ . (Note the place of F and G in the latter formula: F describes the source

structure of the two algebras, and G their target structure.) This gives rise to a category

DiAlg(F,G) . Its objects are dialgebras, its morphisms are dialgebra homomorphisms, and

the composition and identities are inherited from the underlying category. (To be precise,

rather than taking dialgebras ϕ as objects in DiAlg(F,G) , we should take pairs (ϕ, a) ,

satisfying ϕ: Fa → Ga , since we must be able to retrieve the carrier a from such an

object.) The so-called forgetful functor U : DiAlg(F,G) → A , where A is the source

category of F and G , is defined as follows: Uϕ = the carrier of ϕ , and Uf = f . Thus

‘Uϕ’ is a handy abbreviation of ‘the carrier of ϕ ’. We shall use the notion of dialgebra

mainly in the description of ‘transformer’ below.

The normal, co- and di- algebras defined above are ‘single-sorted’ with respect to

the default category, since their carrier is just one object in the category. However, the

algebras are n -sorted in A if the default category is an n -fold product category An .

We will not use and discuss ‘many-sortedness’ in this paper. The notion of datatype is

discussed in a little more detail in Section H.

C. Transformer and Law

9 Abstracting from syntax. Conventionally an equation for algebra ϕ is just a pair of

terms built from variables, the constituent operations of ϕ , and some fixed standard

operations. An equation is valid if the two terms are equal for all values of the variables.

We are going to model a syntactic term as a morphism that has the values of the variables

as source. For example, the two terms ‘ x ’ and ‘ x join x ’ (with variable x of type tree)

are modeled by morphisms id and id ∆ id ; join of type tree → tree . So, an equation for

ϕ is modeled by a pair of terms (Tϕ, T ′ϕ) , T and T ′ being mappings of morphisms

which we call ‘transformers’. This faces us with the following problem: what properties

must we require of an arbitrary mapping T in order that it model a classical syntactic

Datatype Laws without Signatures 7

term? Or, rather, what properties of classical syntactic terms are semantically essential,

and how can we formalise these as properties of a transformer T ? Of course, T has to

be well behaved with respect to typing (like functors). And besides that, the resulting

morphism Tϕ should be built out of ϕ in a way that is independent of the properties

of the particular ϕ itself and its carrier. For example, for Id -algebras we disallow the

following mappings as transformer.

Tϕ = if ϕ has carrier nat then succ else ϕ

Tϕ = if ϕ is bijective then the inverse of ϕ else ϕ .

We exclude these mappings not only for intuitive reasons, but also because they do

not have the properties we want to hold. A tentative definition that a transformer is a

natural transformation in the underlying default category does meet our intuitive wish

and enables us to prove several desirable theorems, but it makes some terms unexpressible

as a transformer (see Theorem 24). So we need a weaker requirement to be imposed on

a mapping in order that it can be said to model the intuitive notion of term. A way out

is to introduce a syntax of terms, and require T to be expressed in that syntax. That is

just what conventionally is done up to now, and what we wish to avoid.

10 A property observed. Our solution is to impose a property, saying that homomor-

phisms are mapped to homomorphisms. This seems to be precisely what is needed to carry

the proofs through. And it is also reasonable from an intuitive point of view. Let me try

to explain it. (You may skip this informal explanation; the proofs of Theorem 17 and 19

are just the formalisation of the argument here.) Suppose ϕ: a→ a and Tϕ: Ha→ Ja .

Following Meertens (1989) we view a term as a box with several input and output

gates. Such boxes can be wired together to form composite boxes. You may imagine how

the wiring for sequential composition (;) and parallel composition (×) would look. You

can also easily construct boxes for the duplication id ∆id , and for the swap exr ∆exl . Now

imagine a box (term) Tϕ: Ha → Ja built with several copies of a box for ϕ: a → a ,

and assume that for some f : a → b and ψ: b → b the equality ϕ ; f = f ; ψ holds.

Suppose you insert on each of the output lines a box for f , thus forming a composite

box Tϕ ; Jf : Ha → Jb . You can then shift each box for f along the wires in the

direction of the input side, through all compositions, until it arrives just after a box for

ϕ . Since ϕ ; f = f ; ψ you can push the box for f through that for ϕ while replacing

the latter by a box for ψ , and continue shifting the box for f along the lines. In this

way, eventually, f is shifted to the input gates. Thus, if ϕ ; f = f ; ψ then you may

expect that Tϕ ; Jf = Hf ; Tψ .

11 Generalisation. Generalising, in the above observation, ϕ: a → a and ψ: b → b

to ϕ: Fa → Ga andψ: Fb → Gb , it is reasonable to expect in the same way that

ϕ ; Gf = Ff ; ψ implies Tϕ ; Jf = Hf ; Tψ . Using dialgebras we can formulate this

as:

f : ϕ→F,G ψ ⇒ f : Tϕ→H,J Tψ .(a)

Maarten M. Fokkinga 8

Notice that this formula makes sense even if not all the entities are in one and the

same category. The most general typing is easily found: there are categories A,B, C , the

functors are typed F,G: A → B and H, J : A → C . It follows that f is in A , ϕ, ψ are

in B , and Tϕ, Tψ are in C . More precisely, if ϕ: Fa →B Ga , then Tϕ: Ha →C Ja ;

so T preserves the carrier of its argument.

We shall now derive two alternative but equivalent formulations of property (a).

Functoriality. Notice that, apparently, T sends DiAlg(F,G) -objects to DiAlg(H, J) -

objects. Actually, if we extend T by defining Tf = f for each DiAlg(F,G) -morphism

f , then property (a) above is one of the axioms for T to be a functor

T : DiAlg(F,G) → DiAlg(H, J) .(b.0)

The other functor axioms are the equations T id = id and T (f ; g) = Tf ; Tg ; these

are trivially valid by defining Tf = f . Thus extended, T is a functor indeed. That T

is the identity on the morphisms in DiAlg(F,G) can also be formalised as

U ′T = U ,(b.1)

where U,U ′ are the appropriate forgetful functors,

U : DiAlg(F,G) → A and U ′: DiAlg(H, J)→ A .

Clearly, a T satisfying (a) can be extended to a T satisfying (b.0) and (b.1), and

conversely, a T satisfying (b.0) and (b.1) also satisfies (a).

Naturality. There is still another reading of the typing of T and property (a), namely

Tϕ: HUϕ→ JUϕ for each F,G -dialgebra ϕ

HUf ; Tψ = Tϕ ; JUf for each f : ϕ→F,G ψ ,

where U : DiAlg(F,G)→ A . So, T is a natural transformation in C from HU to JU ,

T : HU .→ JU .(c)

And each T satisfying (c) also satisfies (a). This was observed by Ross Paterson and Peter

de Bruin. The latter also pointed out that transformers are a —slight— generalisation of

the semantic operations described by Manes (1976). Manes investigates a relation with

syntactic operations, but doesn’t discuss most topics of this chapter.

In the following definition we choose one of the three equivalent ways (a), (b.0,b.1) and (c)

to characterise transformers.

12 Definition. (Transformer, Law) Let F,G: A → B and H, J : A → C be

functors. Then a transformer of type (F,G) → (H, J) is: a mapping T from F,G -

dialgebras to H, J -dialgebras satisfying

f : ϕ→F,G ψ ⇒ f : Tϕ→H,J Tψ Transformer

that is,

ϕ ; Gf = Ff ; ψ ⇒ Tϕ ; Jf = Hf ; Tψ

Datatype Laws without Signatures 9

for all A -objects a, b , and morphisms f : a→A b , ϕ: Fa→B Ga , and ψ: Fb→B Gb .

The pairs (F,G) and (H, J) are called the source type and target type respectively.

A law is: a pair of transformers of the same type, called the type of the law. For a law

E = (T, T ′) we say E holds for ϕ if: Tϕ = T ′ϕ . Alternatively we also say Eϕ holds

or ϕ satisfies E ; a more formal notation would be |= Eϕ or ϕ |= E .

A conditional law is: a pair E,E ′ of laws, both having the same source type, that is,

both being applicable to the same dialgebras. Such a law holds for ϕ if: Eϕ implies

E′ϕ . (We shall hardly discuss conditional laws.)

Often we will take A = B = C in applications of transformers, so that F,G,H, J are

endofunctors. It is straightforward to extend the definitions in such a way that transform-

ers and laws accept several arguments rather than one. Actually, this is already covered

by the above definition by taking B to be a suitable product category. For example,

when B = B′ × B′ , then the transformer gets as argument a pair from B′ . This will

occur in Section H.

13 Use of laws. If a law is prescribed for an F -algebra ϕ , then of course the law must

have source type (F, Id) , that is, G = Id . The definition of law and transformer may

seem unnecessarily general for this application. However, in composing transformers we

need the more general form with G 6= Id , even though the entire composite transformer

has G = Id ; see Theorem 19. A dual remark holds for co-algebras. As regards to the

target type a similar observation holds; in this case either H = Id or J = Id depending

on the use of the law. We illustrate both possibilities for the use of a law in the following

example; yet another use, related to the first one, is discussed in Section H.

14 Example: trees continued. Consider the law “ x join y = y join x ,” which we shall

formalise later. Here the type of the two terms, viewed as functions of x and y , is

II tree → tree , where tree is the carrier of the transformed algebra. So the transformers

that model these terms have target type (II , Id) , that is, J = Id (and H = II). The

law induces an equivalence relation on tree that is a congruence for the algebra, namely

the least equivalence relation that contains all pairs (x join y, y join x) (as indicated

by the law) and is closed under the operations of the algebra, meaning that with (x, x′)
and (y, y′) it also contains (tip x, tip x′) and (x join y, x′ join y′) . Imposing the law on

the algebra means to identify equivalent elements and to consider the induced quotient

algebra.

Now consider the law “ size xmod 2 = 0 ” (also formalised later). Here the type of the

two terms, viewed as functions of x , is tree → nat , so, since tree is the carrier of the

transformed algebra, in this case the transformers have target type (Id ,nat) , that is,

H = Id (and J = nat). Imposing the law on the algebra means to leave out from the

carrier the trees with odd size and to look for an “induced subalgebra” (which might not

exist at all).

In the sequel we shall illustrate our notion of transformer and law mainly for the case

G = Id = J : applicable to algebras and meant to identify elements of the carrier. We are

in fact primarily interested in the rôle of the Transformer property, since we conjecture

Maarten M. Fokkinga 10

this to be the heart of the formalisation of the semantics of terms. Further applications

of transformers and laws await future research.

15 Example: trees continued. By making nil neutral for join (that is, making nil the

identity for join) it behaves properly as ‘empty’: joining nil to a structure yields the

same structure again.

By further imposing associativity of join the trees become effectively lists or sequences,

known as join lists: when x join (y join z) = (x join y) join z , the parentheses may be

omitted, and that structure can be denoted by x join y join z , the usual notation for a

list.

Bags result by imposing commutativity of join as well: when x join y = y join x , the

order in which the elements are joined to a structure is insignificant.

Finally, sets are obtained if join is made absorptive (idempotent) too: when xjoinx =

x , the multiplicity of the elements in a structure is insignificant, as for sets.

Meertens (1986) attributes to H.J. Boom the above observation that trees, lists, bags,

and sets are thus related. We shall show how the laws can be expressed as pairs of

transformers. The laws are applicable to every a† -algebra, not only to the initial one

(the trees). Also the law for ‘even size’ of trees is formalised; this one has a feature not

present in the others.

Let ϕ = e ∇ f ∇⊕: 1 + nat + IIa → a be an arbitrary OneNatBin -algebra. Observe

that the constituent operations of ϕ can be expressed as follows.

e = in3,0 ; ϕ : 1 → a

f = in3,1 ; ϕ : nat → a

⊕ = in3,2 ; ϕ : II a→ a .

So when we say Tϕ = . . . e . . .⊕ . . . , we actually mean the right-hand side that is ob-

tained by substituting the above definitions for e, f, and ⊕ . We discuss the simplest

laws first.

Absorptivity. In order to express x ⊕ x = x for all x in a , take

Tϕ = split ; ⊕ and T ′ϕ = id ,

where split = id ∆ id . Here and in the following examples, Theorems 19, 20, and 21

imply the validity of the Transformer property for both T and T ′ on account of the

way they are composed out of basic transformers. But it may be instructive to verify the

property at least once explicitly. We do it here for T , the verification for T ′ is trivial.

Consider two arbitrary OneNatBin -algebras ϕ = d∇g∇⊕ and ψ = e∇h∇⊗ . Suppose

f is a homomorphism from ϕ to ψ ,

f : ψ →OneNatBin ψ

that is,

d ; f = e

g ; f = h

⊕ ; f = II f ; ⊗ .

Datatype Laws without Signatures 11

Then f is a homomorphism from Tϕ to Tψ :

f : Tϕ→Id ,Id Tψ

≡ definition T , definition →
split ; ⊕ ; f = f ; split ; ⊗

≡ lhs: assumption on f , rhs: naturality split : Id .→ II

split ; II f ; ⊗ = split ; II f ; ⊗
≡ equality

true.

Commutativity. To express x⊕ y = y ⊕ x for all x, y in a , take

Tϕ = ⊕ and T ′ϕ = swap ; ⊕ ,

where swap = exr ∆ exl .

Neutrality. To express e ⊕ x = x for all x in a , take

Tϕ = (! ; e) ∆ id ; ⊕ and T ′ϕ = id .

Here !: a→ 1 is the unique morphism into the unit type 1 .

Associativity. To express (x⊕ y)⊕ z = x⊕ (y ⊕ z) for all x, y, z in a , take

Tϕ = ⊕× id ; ⊕ and T ′ϕ = assoc ; id ×⊕ ; ⊕
where

assoc = (exl ; exl) ∆ ((exl ; exr) ∆ exr) : (X × Y)× Z .→X × (Y × Z)

Here functors X,Y, Z stand for Ex 3,0,Ex 3,1,Ex 3,2 .

Even size. A problem in expressing (size x) mod 2 = 0 is that size is not an operation

of the algebra. Given that ϕ is the initial algebra, size is just ([ϕ → zero ∇ one ∇ add]) ,

as we have shown earlier. However, T should be applicable to every algebra ϕ , not just

an initial one. In fact, it is a problem what “ size ” means at all if ϕ is not initial. One

way out is this. First extend the algebra with an additional operation ψ specified by the

‘defining equations’ for size : “ϕ ; ψ = Fψ ; zero ∇one ∇add ”. This is discussed in detail

in Section H and gives an F,G -bialgebra (ϕ, ψ) for some G . Then form, for arbitrary

F,G -bialgebra (ϕ, ψ) , the law E suggested by

E(ϕ, ψ) = “ ϕ ; ψ ; mod2 = zero ” .

Transformers are applicable to bialgebras indeed, by a suitable instantiation of A , B ,

and the functors in the definition of transformer.

After all these examples one might wonder whether there are morphism mappings that

have type (F,G) → (H, J) for some F,G,H, J and are not transformers.

16 Fact. The morphism mappings given at the beginning of the section are not trans-

formers; the Transformer property is not valid for them.

Maarten M. Fokkinga 12

D. Expressiveness of transformers and laws

We shall see in this section that the Transformer property for a mapping of type

(F,G) → (H, J) follows from the Theorems For Free theorem (provided it is applicable

to the mapping). Further, the usual syntactic ways to compose terms are also applicable

to transformers: they are closed under composition and substitution, and the identity

mapping and each functor and constant mapping is a transformer. Thus transformers

are at least as expressive as syntactic terms. Also, natural transformations of a higher

type are transformers, but not conversely. And, finally, laws are closed under conjunction.

* * *

17 Theorem. Let T be a mapping of type ∀α :: (Fα → Gα) → (Hα → Jα) , and

suppose that the Theorems For Free theorem of Wadler (1989) is applicable to T . Then

T is a transformer of type (F,G) → (H, J) .

Proof. We use the notation of Wadler (1989) except for our choice of identifiers and

the order of composition:

Each function f denotes a relation, namely (x, y)∈f ≡ f(x)=y . Composition ; is

extended to relations: (x, z) ∈ R ; S iff there exists an y for which (x, y) ∈ R and

(y, z) ∈ S . For relations R and S and relation mapping F , expressions R → S

and ∀r :: Fr denote a relation too:

(f, g) ∈ (R→ S) ≡ R ; g ⊆ f ; S

≡ ∀x, y :: (x, y) ∈ R ⇒ (f x, g y) ∈ S
(T, T ′) ∈ (∀r :: Fr) ≡ ∀a, b, R: a⇔b :: (Ta, T

′
b) ∈ FR .

Here, a⇔b is the type of relations containing pairs (x, y) with x ∈ a and y ∈ b .

All morphisms (functions) are required to be total, so that f ⊆ g equivales f = g .

The task is to prove that Transformer is valid for T . For this we argue

T : ∀α :: (Fα→ Gα)→ (Hα→ Jα)

⇒ Theorems for Free — applicability assumed

(T, T) ∈ ∀r :: (Fr → Gr)→ (Hr → Jr)

≡ definition ∀
∀reln R: a⇔ b. (Ta, Tb) ∈ (FR→ GR)→ (HR→ JR)

≡ definition → (second formulation)

∀reln R: a⇔ b. ∀ϕ, ψ. (ϕ, ψ) ∈ (FR→ GR) ⇒ (Taϕ, Tbψ) ∈ (HR→ JR)

≡ definition → (first alternative) at both sides

∀reln R: a⇔ b. ∀ϕ, ψ. FR ; ψ ⊆ ϕ ; GR ⇒ HR ; Tbψ ⊆ Taϕ ; JR

⇒ taking R: a⇔ b to be a function f : a→ b

∀fctn f : a→ b. ∀ϕ, ψ. Ff ; ψ = ϕ ; Gf ⇒ Hf ; Tbψ = Taϕ ; Jf

which is the required Transformer property. (To be very precise, it is not T , but T ′

defined by T ′ϕ = Tcarrier ϕϕ , that is a transformer.)

Datatype Laws without Signatures 13

One condition on T for the applicability of the Theorems For Free theorem is that T is

lambda-definable (and there are some more conditions on the category). In the definition

of transformer each morphism mapping is allowed, even those that are not lambda-

definable. Theorems For Free suggests that Transformer is a crucial property (and

provides an alternative rationale for requiring this property to hold for transformers).

Moreover, working in a ‘functional’ categorical setting, it seems that Theorems For Free

suggests no stronger property for transformers.

18 Composite transformers. Here follow some theorems showing how transformers may

be composed to form transformers again.

19 Theorem. The following equations define transformers of the type indicated, pro-

vided that T, T ′ are transformers of type (F,G) → (H, J) and (F ′, G′) → (H ′, J ′)
respectively, and that the well-formedness conditions at the right hold.

definition typing condition

Iϕ = ϕ I : (F,G)→ (F,G)

fϕ = f f : (F,G)→ (srcf, tgtf)

ε′ϕ = εUϕ ε′ : (F,G)→ (H, J) ε: H .→ J

(T ;T ′)ϕ = Tϕ ; T ′ϕ (T ;T ′) : (F,G)→ (H, J ′)

{
(F,G) = (F ′, G′)

J = H ′

(T ◦ T ′)ϕ = T (T ′ϕ) (T ◦ T ′) : (F ′, G′)→ (H, J) (H ′, J ′) = (F,G)

([])F ϕ = ([ϕ])F ([]) : (F, Id)→ (UµF , Id) µF exists.

Proof. The correct typing is immediate for all these transformers. As regards the

Transformer property for ([]) we argue as follows. Let a = UµF . Then

af ; ([])ϕ = ([])ψ ; Idf

≡ definition ([]) , a , and Id

([ϕ]) = ([ψ]) ; f

⇐ cata-Fusion

ψ ; f = Ff ; ϕ.

As regards the Transformer property of the composite T ◦ T ′ we argue:

T (T ′ϕ) ; Jf = Hf ; T (T ′ψ)

⇐ Transformer T , noting that (F,G) = (H ′, J ′)

T ′ϕ ; J ′f = H ′f ; T ′ψ

⇐ Transformer T ′

ϕ ; G′f = F ′f ; ψ.

Rephrased with the →F,G notation, this calculation is but a special instance of the proof

that the composition of functors is a functor again.

The other parts are proved similarly to T ◦T ′ . Actually, that f is a transformer follows

also from the fact that ε′ is a transformer, since f : a→ b implies f : a .→ b .

Maarten M. Fokkinga 14

20 Theorem. Let T be a transformer of type (F,G)→ (H, J) , and K a functor into

the source category of F,G,H, J . Then T is also a transformer of type (FK,GK) →
(HK, JK) .

Proof. The typing is clearly correct. As regards the Transformer property we argue:

f : Tϕ→HK,JK Tψ

≡ unfold, fold

Kf : Tϕ→H,J Tψ

⇐ Transformer for T of type (F,G) → (H, J)

Kf : ϕ→F,G ψ

≡ unfold, fold

f : ϕ→FK,GK ψ

as required.

The next theorem shows that each functor is a transformer. Remember that Exl and Exr

denote the extraction (projection) functors from a product category to the component

categories respectively.

21 Theorem. Let K: B → C be a functor. Put X,Y = Exl ,Exr , both being functors

of type B × B → B . Then K is a transformer of type (X,Y)→ (KX,KY) .

Proof. The typing requirement for K is met: taking A = B × B ,

∀a in A, ϕ: Xa→B Y a :: Kϕ: KXa→C KY a
≡ definition A and X,Y

∀b, c in B, ϕ: b→B c :: Kϕ: Kb→C Kc
≡ functoriality of K

true.

To check the Transformer property, we argue:

f : Kϕ→KX,KY Kψ

⇐ general theorem (even for arbitrary X,Y)

f : ϕ→X,Y ψ.

It may be instructive to spell out this implication. Observe that a morphism f in B×B
has the form f = (g, h) for some morphisms g, h in B . The Transformer property

thus reads

(g, h): ϕ→Exl ,Exr ψ ⇒ (g, h): Kϕ→K Exl , K Exr Kψ

that is,

ϕ ; h = g ; ψ ⇒ Kϕ ; Kh = Kg ; Kψ .

Indeed, this is valid for each functor K .

From all these theorems we conclude that for all conventional laws there is no need

to check Transformer explicitly: the transformers of such laws are built entirely by

Datatype Laws without Signatures 15

the compositions of the theorems. In particular this holds for morphisms and natural

transformations that arise from products and sums.

22 Another naturality property of transformers. Before we realised that transformers

are natural transformations as explained in paragraph 11 we were looking for naturality

properties in the way reported here. As a motivation, notice that a transformer T maps

morphisms of type Fa→ Ga into morphisms of type Ha→ Ja . In a sense, transformers

are natural transformations from ‘functor’ F → G to ‘functor’ H → J . Let us first make

precise what we mean by ‘functor’ F → G , taking care of the arising contravariance.

We write the Hom-functor with an infix symbol → :

→ : Cop × C → Set .

Recall its definition: For objects a, b, c, d and morphisms f : a→ b and g: c→ d ,

a→ b = {x| x: a→C b}
f → g = λ(x :: f ; x ; g) : (b→ c)→ (a→ d) .

The interchange of a and b in the type of (f → g) means that → is contravariant

in its first argument, indicated by op in the typing. Notice that x: a →C b equivales

x ∈ a→ b . For readability put X,Y = Exl ,Exr . Recall also the convention that (F †
G)x = Fx †Gx , which we shall use with → for † . With these conventions we have two

equally typed functors:

(FX → GY) : Aop × B → Set

(HX → JY) : Aop × B → Set

whenever

F : A → C (hence F : Aop → Cop)
G : B → C
H : A → D (hence H : Aop → Dop)
J : B → D .

Consider now a natural transformation T : (FX → GY) .→ (HX → JY) , where

F,G,H, J are typed as above. Working out in detail what naturality means, we find

T : (FX → GY) .→ (HX → JY)

≡ naturality: for all (f, g): (a, b)→Aop×B (a′, b′) (so f : a′ →A a)

(Ff → Gg) ; Ta′b′ = Tab ; (Hf → Jg)

≡ extensionality in Set : for all ϕ ∈ (Fa→ Gb)

((Ff → Gg) ; Ta′b′)ϕ = (Tab ; (Hf → Jg))ϕ

≡ application, composition, hom-functor

Ta′b′(Ff ; ϕ ; Gg) = Hf ; Tabϕ ; Jg

≡ for ⇒ : instantiation with a, a′, f := a, a, id , and b, b′, g := b, b, id ,

for ⇐ : use (ntrf0) with a, ϕ := a′, (Ff, ϕ) , followed by (ntrf1)

Maarten M. Fokkinga 16

Tab′(ϕ ; Gg) = Tabϕ ; Jg ∧(ntrf0)

Ta′b(Ff ; ϕ) = Hf ; Tabϕ.(ntrf1)

That is, natural transformation T satisfies a two-sided fusion law. (An adjunction be-

tween F and J is nothing but such a natural transformation that has an inverse, in

which case necessarily G = H = Id .) Notice that the subscript (a, b) in Tabϕ may be

expressed in terms of ϕ by using the forgetful functor U : DiAlg(FX,GY) → A × B ,

namely (a, b) = Uϕ .

With F,G,H, J as above, consider now a mapping T ′ of type (FX,GY)→ (HX, JY) .

Working out in detail what the Transformer property means, we find:

T ′ is a transformer

≡ definition Transformer:

For all (FX,GY) -dialgebras ϕ and ψ ,

and all (f, g) of the appropriate type

(f, g): ϕ→FX,GY ψ ⇒ (f, g): T ′ϕ→HX,JY T ′ψ

≡ definition → , definition X,Y

ϕ ; Gg = Ff ; ψ ⇒ T ′ϕ ; Jg = Hf ; T ′ψ.(trafo)

We are now prepared to relate the transformer property to naturality in the underlying

category.

23 Theorem. (Meertens) Let functors F,G,H, J, and the forgetful functor U be

typed as above in paragraph 22. Suppose T is a transformation (not required to be

natural) of type (FX → GY) → (HX → JY) . Define mapping T ′ by T ′ϕ = TUϕϕ .

Then T ′ maps (FX,GY) -dialgebras to (HX, JY) -dialgebras with preservation of the

carrier, and:

T is natural (of type (FX → GY) .→ (HX → GY))
≡
T ′ is a transformer of type (FX,GY)→ (HX,GY).

Proof. The claim about the type of T ′ is immediate; as a consequence the equivalence

makes sense. For part ⇒ of the equivalence, we establish the required Transformer

property (trafo) as follows. Let ϕ: Fa →C Gb = (FX → GY)(a, b) be arbitrary, and

ψ: Fa′ →C Gb′ , and (f, g): (a′, b)→A×B (a, b′) . Then:

T ′ϕ ; Jg = Hf ; T ′ψ

≡ definition T ′

Tabϕ ; Jg = Hf ; Ta′b′ψ

≡ in lhs naturality T : (ntrf0),

in rhs naturality T : (ntrf1) with a, b, a′, ϕ := a′, a, b′, ψ

Tab′(ϕ ; Gg) = Tab′(Ff ; ψ)

⇐ Leibniz

ϕ ; Gg = Ff ; ψ.

Datatype Laws without Signatures 17

For part ⇐ of the equivalence, we firstly establish the required fusion law (ntrf0) as

follows:

Tab′(ϕ ; Gg) = Tabϕ ; Jg

≡ identity, definition T ′

Hid ; T ′(ϕ ; Gg) = T ′ϕ ; Jg

⇐ property (trafo) for T ′ , with f, ψ := id , (ϕ ; Gg)

F id ; ϕ ; Gg = ϕ ; Gg

≡ identity

true.

Secondly, fusion law (ntrf1) may be established similarly: using (trafo) with g, ψ :=

id , (Ff ; ϕ) .

The above theorem was only formulated and proved, after we had found a direct proof

of the following corollary.

24 Corollary. Let F,G,H, J be typed as above in paragraph 22, but with the addi-

tional constraint that A = B . Suppose T : (FX → GY) .→(HX → JY) . Define mapping

T ′ by T ′ϕ = TUϕ,Uϕϕ , where U : DiAlg(F,G)→ A . Then T ′ is a transformer of type

(F,G) → (H, J) . The converse is not true, that is, there exist transformers that cannot

be written this way.

Proof. A direct proof is easy: just adapt part (⇒) of the proof of Theorem 23. An

indirect proof runs as follows. Let ∆ be the doubling functor: ∆x = (x, x) . Then:

T ′ is transformer of type (F,G)→ (H, J)

≡ property X∆ = IdA and Y∆ = IdB , A = B
T ′ is transformer of type (FX∆, GY∆)→ (HX∆, JY∆)

⇐ Theorem 20 with K := ∆

T ′ is transformer of type (FX,GY)→ (HX, JY)

⇐ Theorem 23

T : (FX → GY) .→ (HX → GY).

The constraint A = B is necessary for the phrase ‘transformer of type (F,G) → (H, J) ’

to make sense.

To show that the converse is not true, consider arbitrary η: H .→J . Then by Theorem 19

η is a transformer of type (F,G) → (H, J) . It is not a natural transformation of type

(FX → GY) .→ (HX → JY) since the typing is not correct; this is also apparent from

the two-sided fusion law that now simplifies to

η = Hf ; η ; Jg

which should hold for each a, b, c, d and f : a → b and g: c → d — clearly impossible

in general. For a counterexample, take η = id : Id .→ Id .

Maarten M. Fokkinga 18

25 Conjunction. If E0 and E1 are two laws with the same source type, then by ‘a

conjunction’ of E0 and E1 we mean a law E such that for all ϕ : Eϕ ≡ E0ϕ ∧ E1ϕ .

We shall show that there are two ways of representing the conjunction of laws. The two

ways yield laws of different target type.

For mappings Ti: (F,G)→ (Hi, J) (i = 0, 1) we define T0 ∇ T1 by

(T0 ∇ T1)ϕ = T0ϕ ∇ T1ϕ : H0a+H1a→ Ja

for any a and ϕ: Fa → Ga . It follows that T0 ∇ T1 is a mapping of type (F,G) →
(H0+H1, J) . For Si: (F,G) → (H, Ji) the composite S0 ∆ S1 is defined similarly, and

we have

S0 ∆ S1 : (F,G) → (H, J0×J1)

Of course we need to assume that the category has sums or products, respectively.

26 Theorem. Let Ti, T
′
i : (F,G)→ (Hi, J) be transformers for i = 0, 1 . Then T0 ∇T1

is a transformer, and

(T0 ∇ T1)ϕ = (T ′0 ∇ T
′
1)ϕ ≡ T0ϕ = T ′0ϕ ∧ T1ϕ = T ′1ϕ .

Similarly, for Si, S
′
i: (F,G) → (H, Ji) , mapping S0 ∆ S1 is a transformer, and

(S0 ∆ S1)ϕ = (S′0 ∆ S′1)ϕ ≡ S0ϕ = S′0ϕ ∧ S1ϕ = S′1ϕ .

Proof. The equivalences follow from the properties for product and sum. For the

Transformer property of T0 ∇ T1 , let ϕ ; Gf = Ff ; ψ . Then

(T0 ∇ T1)ϕ ; Jf
=

(T0ϕ ; Jf) ∇ (T1ϕ ; Jf)

= Transformer T0, T1

(H0f ; T0ψ) ∇ (H1f ; T1ψ)
=

(H0 +H1)f ; (T0 ∇ T1)ψ.

The proof for S0 ∆ S1 is similar.

So, if two laws E0 = (T0, T
′
0) and E1 = (T1, T

′
1) have typing Ti, T

′
i : (F, Id)→ (Hi, Id) ,

and are used to “identify elements in the carriers” of F -algebras as explained in para-

graphs 13 and 14, then E = (T0 ∇T1, T
′
0 ∇T

′
1) is a conjunction of such a type that it may

be used for the same purpose as E0 and E1 . The ∆ -form of the conjunction of laws is

to be used if the laws are used to “leave out elements from the carriers” as explained in

paragraph 14.

Of course, there are also arbitrary infinite conjunctions of laws, provided the category

has arbitrary infinite sums or products.

E. One half of a Birkhoff characterisation

27 Birkhoff characterisation. Let C be the default category. Let F and H be end-

ofunctors and E = (T, T ′) be a law of type (F, Id) → (H, Id) , fixed throughout this

section. We define Alg(F,E) as the full subcategory of Alg(F) containing all and only

Datatype Laws without Signatures 19

those F -algebras for which law E is valid. A “Birkhoff characterisation” is a character-

isation of the classes (subcategories) that can be specified by means of a single law. For

example, a characterisation might be an equivalence like: for any class A of F -algebras,

A = Alg(F,E) for some law E

if and only if

A is closed under subalgebras, homomorphic images, and products.

We shall give one half of such an equivalence (the easy half): some closure properties

of Alg(F,E) . (I’ve been unable to prove the converse.) Some care is needed in defining

subalgebras and homomorphic images since we wish to work in an arbitrary category,

and not just in Set where several properties hold that are not valid in, say, CPO . The

notions of subalgebra and homomorphic image that we define are dual to each other.

28 Subalgebra. Given F -algebras ϕ and ψ , we say ϕ is a subalgebra of ψ if: there

exists an f : ϕ→F ψ which is monic in C . A subcategory A of Alg(F) is closed under

subalgebras if: each subalgebra of an algebra in A is in A too. More in spirit with the

position that in any category the morphisms are important and the objects play only

an auxiliary rôle, we define also another, related, property. A is closed under incoming

monos if: f is a morphism in A whenever f : ϕ →F ψ is monic in C and ψ is in

A . For a full subcategory of Alg(F) , closure under subalgebras equivales closure under

incoming monos.

29 Theorem. Alg(F,E) is closed under subalgebras (i.e., under incoming monos).

Proof. Suppose f : ϕ →F ψ is monic, and ψ is in Alg(F,E) . We show that Eϕ

holds.

Tϕ = T ′ϕ

⇐ f monic

Tϕ ; f = T ′ϕ ; f

≡ Transformer (condition ‘ ϕ ; f = Ff ; ψ ’ is satisfied) at both sides

Hf ; Tψ = Hf ; T ′ψ

⇐ Leibniz, and ψ in Alg(F,E)

true.

So ϕ is in Alg(F,E) and, since Alg(F,E) is a full subcategory of Alg(F) , f is a

morphism in Alg(F,E) as well.

30 Homomorphic images. Consider f : ϕ→F ψ . Working in Set the homomorphic im-

age of ϕ under f is the algebra ψ restricted to the range of function f . A generalisation

to arbitrary categories is problematic, since categorically there are no points available.

Working with varieties, as Lehmann (1978; 1980) does, the corresponding closure prop-

erty says that with ϕ also ψ is in the class. That is certainly not true for Alg(F,E) ,

as we shall argue after the theorem. Our way out is to consider epic homomorphisms.

Maarten M. Fokkinga 20

We define: A subcategory A of Alg(F) is closed under homomorphic images if: ψ is

in A whenever there exists an f : ϕ→F ψ which is epic in C and ϕ is in A . And, A
is closed under outgoing epis if: f is a morphism in A whenever f : ϕ →F ψ is epic

and ϕ is in C . For a full subcategory of Alg(F) , closure under homomorphic images

equivales closure under outgoing epis.

31 Theorem. Suppose H (from the type of E) preserves epis. Then Alg(F,E) is

closed under homomorphic images (that is, under outgoing epis).

Proof. Let f : ϕ→F ψ be epic, with ϕ in Alg(F,E) .

Tψ = T ′ψ

≡ Hf is epic

Hf ; Tψ = Hf ; T ′ψ

≡ Transformer (condition ‘ f : ϕ→F ψ ’ is satisfied) at both sides

Tϕ ; f = T ′ϕ ; f

≡ assumption: ϕ in Alg(F,E)

true.

So ψ is in Alg(F,E) , and since Alg(F,E) is a full subcategory of Alg(F) , f is a

morphism in Alg(F,E) .

For later use we mention the following result; its proof is part of the above one.

32 Lemma. Let ϕ in Alg(F,E) , and f : ϕ→F ψ . Then Eψ holds “on the range of

f ”, that is, Hf ; Tψ = Hf ; T ′ψ .

The requirement that a functor (like H in the theorem) preserves epis, is a mild one.

In Set all polynomial functors preserve epis. Lehmann (1980) argues that preservation

of epis is an important property.

33 Homomorphisms do not preserve laws. It is now clear why homomorphisms do not

preserve the validity of laws: outside the range of the homomorphism nothing can be

inferred for the target algebra. (This may be a good reason to work with the variety

VF (EµF) instead of Alg(F,E) , see Definition 38 and Theorem 39.) For example, imagine

in Set the algebra zero ∇ add : 1 + II nat → nat of finite naturals, where zero is a

neutral element for add . Form another algebra by adjoining a fictitious element ω to

nat , and extend operation add as follows: for any natural x , add ′(x, ω) = add ′(ω, x) =

x and add ′(ω, ω) = ω . The injection of the original algebra into this new one is a

homomorphism, but in the new algebra zero is no longer neutral for add ′ .

34 Product. For F -algebras ϕ, ψ (with carriers a and b say), and F -homomorphisms

f, g with common source in Alg(F) we define

ϕ×F ψ = (F exl ; ϕ) ∆ (F exr ; ψ) : F (a× b)→ (a× b)
f ∆F g = f ∆ g

exlF , exrF = exl , exr .

Datatype Laws without Signatures 21

It is then readily verified that ×F , ∆F , exlF , exrF form a categorical product in

Alg(F) , and we omit the subscript F in these operations since no confusion can result.

In particular, exl : ϕ× ψ →F ϕ , that is,

ϕ× ψ ; exl = F exl ; ϕ ,(∗)

and similarly for exr . The generalisation to arbitrary products is straightforward; the

proviso being that the default category has arbitrary products.

35 Theorem. Alg(F,E) is closed under products.

Proof. We consider only binary products.

T (ϕ× ψ) = T ′(ϕ× ψ)

≡ the projections are jointly monic in C
T (ϕ× ψ) ; exl = T ′(ϕ× ψ) ; exl and

T (ϕ× ψ) ; exr = T ′(ϕ× ψ) ; exr

≡ Transformer at both sides (condition is satisfied: see (∗) above)

Hexl ; Tϕ = Hexl ; T ′ϕ and

Hexr ; Tψ = Hexr ; T ′ψ

⇐ Leibniz, ϕ, ψ in Alg(F,E)

true.

F. Initial algebras with laws

Let C be the default category. Let F be an endofunctor for which the initial algebra

α = µF exists. Let E = (T, T ′) be a law of type (F, Id)→ (H, Id) for some endofunctor

H . These data are fixed throughout the section.

As before, Alg(F,E) is the full subcategory of Alg(F) of algebras for which E holds.

We are interested in an algebra that is initial in Alg(F,E) ; we shall denote it by µ(F,E) .

36 Example: trees continued. Take E to be the law such that E(e ∇ f ∇⊕) expresses

both the neutrality of e for ⊕ , and the associativity of ⊕ . Then µ(F,E) , if it exists, is

the algebra of lists (rather than trees). Put nil ′ ∇ tip′ ∇ join ′ = µ(F,E) and let e ∇ f ∇⊕
be another (F,E) -algebra. Now, by definition of initiality, the recursive equations

nil ′ ; h = e

tip ′ ; h = f

join ′ ; h = IIh ; ⊕

have precisely one solution for h , denoted ([nil ′ ∇ tip′ ∇ join ′ → e ∇ f ∇⊕])F,E . Actually,

the equations imply that e is neutral for ⊕ , and ⊕ is associative, at least on the range

of h : see Lemma 32.

Maarten M. Fokkinga 22

37 Induced congruence. We explain here informally in terms of Set the notion of induced

congruence. Let ϕ be an F -algebra with carrier a , and f, g be morphisms with target

a and common source; think in particular of ϕ, (f, g) = α, (Tα, T ′α) . The pair (f, g)

induces an equivalence relation p on a , namely the least equivalence relation on a that

contains all (fx, gx) ; categorically, this is a morphism p with f ; p = g ; p that has

some initiality property. The target of p may be denoted a/(f, g) , thus p: a→ a/(f, g) .

We say that an equivalence relation p for (f, g) is a congruence for ϕ if p -related

elements are mapped by ϕ to p -related results; this is almost the same as saying that

p is a homomorphism from ϕ . Given ϕ and (f, g) , the induced congruence is the least

equivalence relation that contains all pairs (fx, gx) and is a congruence for ϕ ; the target

of p may be denoted ϕ/(f, g) , thus p: ϕ→F ϕ/(f, g) .

Thus, when α and E are given, a construction of µ(F,E) = α/(Tα, T ′α) requires a

construction of the congruence p for algebra α induced by (Tα, T ′α) . Fokkinga (1992b)

gives a construction of p that simulates the well-known one for Set , and assumes prop-

erties of the default category that are not obviously satisfied by category CPO . Since

we are also interested in applications to other categories like CPO , and want to be truly

general, we shall use a result from Lehmann (1978; 1980).

38 Definition. For a pair (f, g) of morphisms with common source and with the

carrier of α as their common target, the (f, g) -variety VF (f, g) is the full subcategory

of Alg(F) of algebras ϕ for which f ; ([ϕ]) = g ; ([ϕ]) .

Notice that ϕ 7→ f ; ([ϕ]) is a transformer, so that VF (f, g) equals Alg(F,E ′) where

E′ is the law determined by the transformers ϕ 7→ f ; ([ϕ]) and ϕ 7→ g ; ([ϕ]) .

39 Theorem. (Lehmann (1980)) For C = Set and C = CPO , and assuming that F

preserves epis, any variety VF (f, g) has an initial object, denoted α/(f, g) . Moreover

([α/(f, g)]) is epic in C .

Actually, Lehmann’s theorem is more general than the above version: it involves a

condition on category C that is satisfied by more categories than just Set and CPO .

The following result enables us to exploit Lehmann’s theorem.

40 Theorem. Suppose that H (of the type of E) preserves epis. Then Alg(F,E) is

a full subcategory of VF (Eα) , and contains each ϕ of VF (Eα) for which ([ϕ]) is epic

in C .

Proof. Since both Alg(F,E) and VF (Eα) are full subcategories of Alg(F) , we have

to show, for the first claim, that each ϕ in Alg(F,E) is also in VF (Eα) . This implication

is shown as follows. Let ϕ be arbitrary in Alg(F) . Then

ϕ is in VF (Eα)

≡ definition 38 of VF (Eα) , and ϕ is in Alg(F)

Tα ; ([ϕ]) = T ′α ; ([ϕ])

≡ Transformer at both sides (condition is satisfied: ([ϕ]): α→F ϕ)

Datatype Laws without Signatures 23

H([ϕ]) ; Tϕ = H([ϕ]) ; T ′ϕ

⇐ Leibniz(∗)
Tϕ = T ′ϕ

≡ definition of Alg(F,E) , and ϕ is in Alg(F)

ϕ is in Alg(F,E).

For the second claim, let ϕ be in VF (Eα) such that ([ϕ]) is epic in C . Then the ⇐
in step (∗) above can be strengthened to ≡ , since ([ϕ]) is epic and H is assumed to

preserve epis. Hence ϕ is in Alg(F,E) as well.

41 Corollary. Suppose both F and H preserve epis, and C satisfies the conditions

of Lehmann’s theorem (1980), see 39. Then Alg(F,E) has an initial object, denoted

µ(F,E) .

Proof. By Theorem 39 VF (Eα) has an initial object α/Eα , and ([α/Eα]) is epic in

C . (Here the conditions on F and C are used.) Then by Theorem 40 α/Eα is also in

Alg(F,E) , and moreover it is also initial in Alg(F,E) . (Here it is used that H preserves

epis.)

* * *

Although the following is independent of the precise nature of laws and transformers, we

cannot resist the temptation to include it. The theorem is useful for the development of

efficient programs, as we shall explain afterwards. We put α = µF and β = µ(F,E) ,

and write ([α → ϕ])F as ([ϕ]) , and ([β → ϕ])F,E as ([ϕ])E .

42 Theorem. (Meertens) Suppose (α and also) β exists, and suppose ([β]) has a

pre-inverse u . Then, for each ϕ in Alg(F,E) ,

([ϕ])E = u ; ([ϕ])

([ϕ]) = ([β]) ; u ; ([ϕ]) .

Proof. For the first claim we argue

([ϕ])E = u ; ([ϕ])

≡ u is pre-inverse of ([β])

u ; ([β]) ; ([ϕ])E = u ; ([ϕ])

⇐ Leibniz

([β]) ; ([ϕ])E = ([ϕ])

⇐ cata-Fusion

([ϕ])E : β →F ϕ

≡ cata-Self

true.

The second claim is an immediate corollary:

([β]) ; u ; ([ϕ])

= just shown

Maarten M. Fokkinga 24

([β]) ; ([ϕ])E

= cata-Fusion (condition is satisfied: ([ϕ])E : β →F ϕ)

([ϕ]).

The existence of β (hence the well-definedness of ([])E) is guaranteed by the previous

theorems if F and H preserve epis.

43 Application. In Set , the carrier of β consists of the ' -equivalence classes of the

carrier of α , where ' is the least equivalence that contains the pairs ((Tα)z, (T ′α)z)

for all z . A pre-inverse u of ([α → β]) chooses for each equivalence class a representative

in the class. So the theorem says that ([β → ϕ])E at x may be computed by computing

([α → ϕ]) at a representative of x instead. In this way the operational efficiency of a

program may be improved.

44 Example: trees continued. Let E(e∇id∇⊕) express that ⊕ is an associative operation

with neutral element e , and suppose that the law holds for e ∇ id ∇ ⊕ . The value of

([e ∇ id ∇⊕])E at arguments x join′ (y join′ z) and (x join′ y) join′ z is

([e ∇ id ∇⊕])E(x join′ (y join′ z)) = x⊕ (y ⊕ z)

([e ∇ id ∇⊕])E((x join′ y) join′ z) = (x⊕ y)⊕ z .

Due to associativity both results are the same, yet the computations as suggested by

the right hand sides may differ operationally. For example, the first alternative is more

efficient if x ⊕ y takes time linear in size x , and size (x ⊕ y) = size x + size y . (This

is valid in most functional programming languages when operation ⊕ is the concatena-

tion operation of lists.) Thus associativity may be exploited. More generally, let u be

the function that sends x join′ y join′ . . . join′ z (with arbitrary parenthesisation) to

x join (y join (. . . join z)) (with parenthesisation to the right). The theorem asserts that

([e ∇ id ∇⊕])E = u ; ([e ∇ id ∇⊕]) , and by the argument above we know that the catamor-

phism in the right hand side is more efficient than that in the left hand side. (It is quite

easy to express u explicitly. In an actual program transformation u might disappear

completely, namely when this transformation is but one step in a large series of steps.)

45 Another application. In a similar way the second claim of the theorem asserts that

if ϕ satisfies E , then “within the argument” of ([ϕ]) operation α may be manipulated

as if it satisfies E , that is, Tα ; ([ϕ]) = T ′α ; ([ϕ]) . This is shown as follows.

Tα ; ([ϕ]) = T ′α ; ([ϕ])

≡ second claim of the theorem: ([ϕ]) = ([β]) ; u ; ([ϕ])

Tα ; ([β]) ; u ; ([ϕ]) = T ′α ; ([β]) ; u ; ([ϕ])

⇐ Leibniz

Tα ; ([β]) = T ′α ; ([β])

≡ Transformer (condition is satisfied: ([β]): α→F β) at both sides

H([β]) ; Tβ = H([β]) ; T ′β

≡ Leibniz, Eβ holds

Datatype Laws without Signatures 25

true.

G. Each colimit is an initial lawful algebra

Lambert Meertens has made the following observation. For an arbitrary colimit we can

construct an endofunctor F and a law E such that (the “∇ ” of) the colimit is an

initial (F,E) -algebra, provided the category has arbitrary sums. This is further evidence

for the expressiveness of our notion of law. We shall first perform the construction for

coequalisers, and then for colimits in general.

46 Coequalisers. Let f, g be a parallel pair with target a , and let p be a coequaliser

of f, g . This means, by definition, that f ; p = g ; p and for each q with f ; q = g ; q

there exists a morphism, which we denote p\q , such that

p ; x = q ≡ x = p\q coequaliser-Charn

Now take F = a , the constant functor mapping any morphism onto id a . Take

E = (T, T ′) with Tq = f ; q and T ′q = g ; q

for each q: Fb → b = a → b . Then, in the notation of Theorem 19, T = f ; I and

similarly T ′ = g; I , and so E is a law (by that same theorem). Further, Ep holds, and

p: F (tgt p) → tgt p . So p is an (F,E) -algebra. To show the initiality of p we shall

prove cata-Charn, deriving along the way a definition for the required ([p → q]) .

x: p→F q

≡ definition →F and F = a

p ; x = q

≡ coequaliser-Charn, noting that f ; q = g ; q

x = p\q
≡ defining ([p → q]) = p\q
x = ([p → q]).

47 Colimits. We generalise the above construction to arbitrary colimits. The p and q

above become cocones γ, δ or algebras γ ′, δ′ below, the f and g become (the arrows

in) the diagram D , and law E is going to express “the commutativity of all triangles”.

First we give a formalisation of colimit that suits the present purpose well.

Let D be a diagram in C . A cocone for D is a family δ = (a in D :: δa) such that

∀f : a→ b in D :: δa = f ; δb .(a)

A cocone γ is a colimit for D if for any cocone δ for D there exists a morphism, which

we denote γ\δ , such that

∀(a in D :: γa ; x = δa) ≡ x = γ\δ(b) colimit-Charn

48 The construction. Take F = ΣD , where ΣD = (the carrier of) the sum of all

objects in D . Similarly to the Trees example each F -algebra δ′: ΣD → d can be

Maarten M. Fokkinga 26

written as δ′ = ∇(a in D :: ina ; δ′) . We design E such that Eδ equivales (a) above:

E = the conjunction of the laws (Ta, T
′
f,b) for all f : a→ b in D

where

Taδ
′ = ina ; δ′

T ′f,bδ
′ = f ; inb ; δ′ .

Indeed, δ′ = ∇(a :: δa) is an (F,E) -algebra iff δ = (a :: δa) is a cocone for D .

Moreover, by Theorem 19 Ta and T ′f,b are transformers, so that (Ta, T
′
f,b) is a law, and

by Theorem 26 the conjunction E can be expressed as a law.

Let γ = (a :: γa) be a colimit for D . We claim that γ ′ = ∇(a :: γa) is initial in

Alg(F,E) . To show this let δ′ = ∇(a :: δa) be an arbitrary (F,E) -algebra. Then, as

argued above, δ = (a :: δa) is a cocone for D , so γ\δ satisfying (b) exists. It is now

readily shown that γ\δ taken as ([γ ′ → δ′]) meets the requirement of cata-Charn:

x: γ′ →F δ′

≡ definition →F

γ′ ; x = Fx ; δ′

≡ definition F as a constant functor

γ′ ; x = δ′

≡ definition γ′ and δ′ and sum

∀a in D :: γa ; x = δa

≡ colimit-Charn: (b) above

x = γ\δ
≡ definition ‘ ([γ′ → δ′]) ’

x = ([γ′ → δ′]).

So γ′ is initial indeed.

H. Equational specification of datatypes

49 Datatype of stacks. A datatype like stack with operations empty , push , isempty ,

top and pop has not the form of an algebra ϕ: Fa → a , but is rather a pair (ϕ, ψ)

with ϕ: Fa→ a and ψ: a→ Ga , for some set a and some endofunctors F,G . To be

specific, for stacks of natural numbers we have:

ϕ = empty ∇ push : 1 + nat × stk → stk = F stk → stk

ψ = isempty ∆ top ∆ pop : stk → bool × nat × stk = stk → Gstk

where stk is the set of the stack values, and apparently F = 1 + nat × Id and G =

bool ×nat × Id . (We could consider stacks over a for arbitrary a , but we wish to avoid

the complications involved.) Often for such “datatypes” some law E is imposed that

defines the ψ -part in terms of the ϕ -part. For stacks the laws are

empty ; isempty = true

push ; isempty = false

Datatype Laws without Signatures 27

push ; top = exl

push ; pop = exr .

Written as two equations:

empty ; ψ = id1 ; true ∆ ... ∆ ...

push ; ψ = idnat × ψ ; (! ; false) ∆ exl ∆ (exr ; ex 3,1 ∆ ex 3,2 ; push)

where on the dots there have to be expressions of type 1 → nat and 1 → stk , respec-

tively, defining the top and pop of an empty stack. (It is outside the scope of our current

interest to discuss this aspect in detail.) We can even combine the two equations into

one, thus obtaining a law

E(ϕ, ψ) = “ ϕ ; ψ = Fψ ; Tϕ ”

for some transformer T of type (F, Id)→ (FG,G) . Theorem 51 below asserts that for

a law of this form, with arbitrary transformer T , the ‘datatype’ (ϕ, ψ) is isomorphic to

the initial F -algebra (the ϕ -part) to which ([Tϕ]) (the ψ -part) is added as a derived

operation. Since for the F above the initial F -algebra is known as the cons-lists over

nat , we find that the datatype of stacks over nat is semantically just the algebra of

cons-lists over nat with some additional derived operations, “destructors” in this case.

50 Bialgebras. Fix a default category, and let F,G be endofunctors. An F,G -bialgebra

is: a pair (ϕ, ψ) with ϕ: Fa → a and ψ: a → Ga , for some a called the carrier of

the bialgebra. So, the pair consists of an algebra and a co-algebra with the same carrier.

Given F,G -bialgebras (ϕ, ψ) and (χ, ω) , we say f is a homomorphism from (ϕ, ψ)

to (χ, ω) if: f : ϕ →F,Id χ and f : ψ →Id ,G ω , using the notation of dialgebras. This

determines a category BiAlg(F,G) : the objects are F,G -bialgebras, the morphisms are

F,G -bialgebra homomorphisms, and the composition and identities are inherited from

the default category.

Actually, a bialgebra is merely a particular dialgebra: defining (F ∆ G)x = (Fx,Gx)

we have BiAlg(F,G) = DiAlg(F ∆ Id , Id ∆G) . Hence there are no new concepts involved,

but only specialisations of known ones.

The notion of transformer and law makes sense for bialgebras, thus. If E is such a

law we let BiAlg(F,G;E) denote the full subcategory of BiAlg(F,G) of those bialgebras

that satisfy E .

51 Theorem. Let T be a transformer of type (F, Id) → (FG,G) , and suppose that

α = µF exists. Let E be the law suggested by

E(ϕ, ψ) = “ ϕ ; ψ = Fψ ; Tϕ ” for F,G -bialgebra (ϕ, ψ) .

Then (α, ([Tα])) is initial in BiAlg(F,G;E) .

Proof. (Observe that law E is well-formed; the type of both sides of the equation is

Fa → Ga where a is the carrier of the argument.) Let (ϕ, ψ) be a F,G -bialgebra for

which E holds. We shall show that

x: (α, ([Tα])) →BiAlg(F,G) (ϕ, ψ) ≡ x = ([ϕ])

Maarten M. Fokkinga 28

thus establishing the existence and uniqueness of an F,G -bi-homomorphism, namely

([ϕ]) , from (α, ([Tα])) to (ϕ, ψ) .

x: (α, ([Tα])) →BiAlg(F,G) (ϕ, ψ)

≡ definition BiAlg(F,G)

x: α→F ϕ ∧ x: ([Tα])→G,Id ψ

≡ cata-Charn

x = ([ϕ]) ∧ ([ϕ]): ([Tα])→G,Id ψ

≡ below(∗)
x = ([ϕ]).

It remains to justify step (∗) . For this we argue

([ϕ]): ([Tα])→G,Id ψ

≡ definition →G,Id

([Tα]) ; G([ϕ]) = ([ϕ]) ; ψ

≡ rhs: cata-Fusion (condition ‘ ψ: ϕ→F Tϕ ’ equivales E(ϕ, ψ))

([Tα]) ; G([ϕ]) = ([Tϕ])

⇐ cata-Fusion

Tα ; G([ϕ]) = FG([ϕ]) ; Tϕ

⇐ Transformer

α ; ([ϕ]) = F ([ϕ]) ; ϕ

≡ cata-Self

true.

Similarly one may specify an F+G -algebra ϕ∇ψ by forcing the ψ -part to be determined

by the ϕ -part. In this case ψ is an additional derived operation that is a “constructor”,

like ϕ .

52 Theorem. Let T be a transformer of type (F, Id) → (G, Id) , and suppose that

α = µF exists. Let E be the law suggested by

E(ϕ ∇ ψ) ≡ “ ψ = Tϕ ” .

Then α ∇ Tα is initial in Alg(F +G;E) .

Proof. We show initiality of α ∇ Tα by establishing cata-Charn. Let ϕ ∇ ψ be an

arbitrary F +G -algebra for which E holds. Then

x: α ∇ Tα →F+G ϕ ∇ ψ

≡ definition →F+G

x: α→F ϕ ∧ x: Tα→G ψ

≡ cata-Charn

Datatype Laws without Signatures 29

x = ([ϕ]) ∧ ([ϕ]): Tα→G ψ

≡ below(∗)
x = ([ϕ]).

Step (∗) is verified as follows.

([ϕ]): Tα→G ψ

≡ law E holds for ϕ ∇ ψ

([ϕ]): Tα→G Tϕ

⇐ Transformer

([ϕ]): α→F ϕ

≡ cata-Self

true.

It is straightforward to combine both theorems, and generalise to the case of triples

(ϕ, ψ, χ) where ϕ is an F,G -dialgebra, ψ is an H -algebra, and χ is a J -co-algebra,

all with the same carrier, and ψ, χ being determined in terms of ϕ by means of a law.

I. Conclusion

We have proposed a semantical, categorical, characterisation of what a term (as used in

conditional equations) is: the Transformer property. The property is almost as simple

as the defining property of functor, and a mapping that satisfies the Transformer

property is called ‘transformer’. The reasonability of the proposal has been shown by

various theorems on the expressiveness of transformers. The simplicity of various proofs

dealing with laws is further evidence of the success of the notion of transformer.

The notion of transformer seems to allow for a great simplification of the theory of equa-

tional specification of datatypes as far as only semantic aspects are concerned. Compare

for example the exposition in Section H with current literature on ‘equational specifi-

cation of datatypes’ such as Ehrig and Mahr’s book (1985). Our formalism is entirely

directed to the semantics (of algebras, or datatypes), whereas signatures and other syn-

tactic aspects are prominently present in Ehrig and Mahr’s formalism. As a result, even

in the discussions of purely semantic aspects they are forced to take into account irrel-

evant aspects like scope rules —appearing in the decision to incorporate a parameter

algebra into the result algebra— and sharing of implementations —appearing in the no-

tion of persistency— and so on. This gives a lot of unnecessary junk and confusion, and

such a treatise is in no way initial. The use of transformer avoids the introduction of

non-semantic aspects. Much more in this area can be done.

In this paper, the development and application of the notion of transformer has only

begun, and much remains to be investigated. At the category theory side the relation

between monad theory and our method of dealing with lawfull algebras calls for clarifi-

cation, since monad theory is another way of dealing with (single sorted) algebras with

Maarten M. Fokkinga 30

equations. At the computing science side more applications are waiting to be discovered.

We mention two that have already been discovered.

First, Erik Meijer (1994) describes the derivation of compilers from a denotational se-

mantics. The notion of transformer turns up, here, to structure the relationship of various

mappings like compiler, interpreter, and proper semantics. He uses the Transformer

property to calculate one from the other.

Second, thanks to the formalisation of the notion of law, one can now formulate conjec-

tures, statements and proofs about ‘laws in general’. For example, consider the operation

of lifting : the binary addition +: II nat → nat is lifted to the binary +′: II (a→ nat)→
(a → nat) defined by: (f +′ g)x = fx + gx . It is easy to see that +′ is associative

because + is, and +′ is commutative since + is. In general, any operation ϕ: Fb→ c

can be lifted to an operation ϕ′: F (a → b) → (a → c) . One may now conjecture that

lifting preserves the validity of all algebraic laws. In order to formally state this conjec-

ture, one needs a formalisation of the notion of law. Meertens and Van der Woude (in

unpublished work) have been able to formally prove this conjecture — using the notion

of transformer.

Acknowledgement. The Constructive Algorithmics Club 1989-1991 at Utrecht Uni-

versity provided a stimulating forum to present and discuss the work reported here. In

particular I have had useful discussions with Jaap van der Woude and Lambert Meertens;

the latter suggested the contents of Section G and part of Theorems 23 and 42. Erik Meijer

brought Lehmann (1978) to my attention. Ross Paterson suggested several improvements

in the presentation, and also some further generalisations.

I wish to thank one referee for suggesting numerous minor improvements in the for-

mulations, and another one for suggesting a few major lines of further research.

References

M. Barr and C. Wells. Category Theory for Computing Science. Prentice Hall, 1990.

H. Ehrig and B. Mahr. Fundamentals of Equational Specification 1 — equations and initial

semantics. Springer Verlag, 1985.

M.M. Fokkinga. Calculate categorically! Formal Aspects of Computing, 4(4):673–692, 1992.

M.M. Fokkinga. Law and Order in Algorithmics. PhD thesis, University of Twente, dept Comp

Sc, Enschede, The Netherlands, 1992.

T. Hagino. Category Theoretic Approach to Data Types. PhD thesis, University of Edinburgh,

1987.

D.J. Lehmann. On the algebra of order — extended abstract. In 19th Symposium on the

Foundations of Computer Science (FOCS), pages 214–220. IEEE, 1978.

D.J. Lehmann. On the algebra of order. Journal of Computer and System Sciences, 21:1–23,

1980.

D.J. Lehmann and M.B. Smyth. Algebraic specification of data types: A synthetic approach.

Math. Systems Theory, 14:97–139, 1981.

G. Malcolm. Algebraic Data Types and Program Transformation. PhD thesis, University of

Groningen, The Netherlands, 1990.

G. Malcolm. Data structures and program transformation. Science of Computer Programming,

14(2–3):255–280, September 1990.

Datatype Laws without Signatures 31

E.G. Manes. Algebraic Theories, volume 26 of Graduate Text in Mathematics. Springer Verlag,

1987.

E.G Manes and M.A. Arbib. Algebraic Approaches to Program Semantics. Text and Monographs

in Computer Science. Springer Verlag, 1986.

L. Meertens. Algorithmics — towards programming as a mathematical activity. In J.W.

de Bakker and J.C. van Vliet, editors, Proceedings of the CWI Symposium on Mathematics

and Computer Science, pages 289–334. North-Holland, 1986.

L. Meertens. Constructing a calculus of programs. In J.L.A. van de Snepscheut, editor, Math-

ematics of Program Construction, Lect. Notes in Comp. Sc., pages 66–90. Springer Verlag,

1989. LNCS 375.

E. Meijer, M.M. Fokkinga, and R. Paterson. Functional programming with bananas, lenses,

envelopes and barbed wire. In FPCA91: Functional Programming Languages and Computer

Architecture, volume 523 of Lect. Notes in Comp. Sc., pages 124–144. Springer Verlag, 1991.

E. Meijer. More Advice on Proving Compilers Correct: Improving Correct Compilers. Submitted

for publication, 1994.

B.C. Pierce. Basic Category Theory for Computer Scientists. MIT Press, Cambridge, Ma, 1991.

P. Wadler. Theorems for free! In Functional Programming Languages and Computer Architec-

ture, pages 347–359. ACM Press, September 1989. FPCA ’89, Imperial College, London.

