Moy 1986

Elimination of Left Nesting: an Example of the Style of
Functional Programming

Maarten M Fokkinga

Department of Informatics
Twente University of Technology
P.O. Box 217, NL 7500 AE ENSCHEDE
Netherlands

ABSTRACT

Let c be an operation so that (c x (c y z)) = (c (c x y) z) whereas the
costs of evaluating (c x (c y 2)) are smaller than the costs of evaluating (c
(c x y) 2). Then it is an efficiency improvement to eliminate, or rather
prevent, calls of c that are nested in the left argument in exchange for
nested calls in the right argument. We shall treat this elimination of left
nesting in a general setting. We shall reason in a mathematically rigorous
way. Actually, by choosing a functional (rather than imperative) language
to specify computations, the programming process becomes a fully
mathematical activity.

1982 CR categories: D1.1, F3.1
Key words & phrases: functional programming, reasoning about programs,
correctness preserving program transformation.

1. Introduction

The main characteristic of functional (or applicative) programming languages is the
absence of assignment and of side-effects in general. Much more important than this opera-
tional aspect is the new style of programming and of reasoning about programs, facilitated
by the absence of side-effects. Roughly, one can say that functional programs are merely
mathematical expressions and that functional programming is a mathematical activity. We
shall illustrate this by treating the following small but important programming technique.
Consider an operation c that is associative, i.e. (c x (c y 2)) = (c (c x y) 2) for all x, y and z,
and suppose that the costs of evaluating (c x (c y z)) are smaller than those of (c (c x y) 2).
(Note, we write parenthesis around the entire application rather than around the argu-
ment.) This is for instance the case for the usual list concatenation, denoted ++. For x+Hy
costs #x (=length of x) cons-operations, so that costs (x+(y++z)) = #x + #y whereas
costs ((x+y)++z)) = 2 = #x + #y, yet both expressions yield the same result. It is now
more efficient to avoid applications of ¢ nested in the left argument in exchange for appli-
cations of ¢ nested in the right argument. We shall show a way to achieve this in a general
setting.

-2 -

This note has been inspired by [van der Hoeven 1986], where van der Hoeven treats the
same problem for the particular case of list concatenation.

2. Formalization of the problem

In what way can left nested applications of c turn up in the specification of a computa-
tion? We shall make the simplifying assumption that such a left nesting of c is the result
of a function f that has a so-called call-tree in a binary form. We thus may consider the
arguments of f as being of a tree structured recursive data type so that the recursion of f
precisely corresponds to the recursion of the data type. So we take as our starting point the
following definitions. There is some type (scheme) defined by

Ts:=As|C(Ts)(Ts)

Here A is mnemonic for Atom and C for Construction-out-of; the asterisk is a type param-
eter, so that (T num) and (T bool) and so on make sense. The type definition is to be read
as

(T #) consist precisely of the following elements:
either some element x of the type #, denoted by (A x).
or some pair of elements t, t’" of the type (T *). denoted by (C t t').

Further we assume that a function f :: T # = T * is defined by

f(Ax)=ax
f(Ctt)=c(ft)(ft)

for some functionsa::# = T sandc: T == T = = T #and some type scheme T =.
Note that according to this definition of f and according to the usual operational semantics,
(f t) specifies a computation with left nested (as well as right nested) applications of c. In
effect, we have made the assumption that f is a homomorphism! This may look too strong
an assumption, but it is not. Homomorphisms play a important role in computations: this
observation forms the basis of various programming disciplines, so as Jackson’s method
("the program structure should match the input structure”), Wirth’s method ("correspon-
dence between various data structures and control structures”) and Meertens’ approach
[Meertens 1986]. Finally it is given that c is associative. The problem now is to construct
an alternative definition of f so that according to this definition (f t) specifies a computa-
tion without left nested applications of c. If we identify a definition with the function
defined, that is we take an intensional rather than extensional (or operational rather than
abstract semantical) view, then the problem is to define a function g so that f t = g t for
all t, whereas (g t) yields no left nested applications of c.

3. A first solution

Consider an arbitrary expression with left nested applications of ¢ (and that may be the
result of f). Represented as a tree rather than as a linearized expression, it looks like
"result” in Figure 1. According to our assumption that it is the homomorphic image of some
element of (T *), we conclude that "result” is the image under f of "arg".

"arg"= — c ="result"

AN A
AVANVAYA
AL AL

el e2 e5 eb el e2 e5 eb
Figure 1. An arbitrary left nested expression "result” and its origin "arg".

The associativety of ¢ means that (c (c x y) zZ) = (c x (c y 2)) for all x, y and z. Thus the
abstract semantic value of an expression is not affected by imposing a different tree struc-
ture on the sequence of leaves of the tree. In particular, in order to eliminate the left
nested applications of ¢ we must transform expression "result” of Figure 1 into "result’™” of
Figure 2. The origin under f is then "arg’™.

C ;__'F.__) ¢ =" tesult’ ”

"\ I A

3 PR .

arg

ﬂ e)l.A A/ \C elz 8/C\c
el3 A/\C e|3 a/ \c
eL /3(\A el‘f a/ \
) Iy

Figure 2. An expression "result’” that is free of left nested applications of ¢
yet equivalent to "result” of Figure 1.

So we see that we may solve the problem of eliminating, or rather preventing, left nested
applications of c by first transforming the argument as suggested by Figures 1 and 2 before
subjecting it to f. We shall now define a function ra (from: right associating) and an auxili-
ary function ra’ that perform this task.

ra (Ax)=Ax

ra(Ctt)=ra"t(rat’)

ra (Ax)t"=C(Ax)t"ra’
o (Ctt)t" =ra"t(ra t't”)

Informally the correctness is obvious; by induction one sees that ra and ra’ yield a (T *)-
value (which is confirmed by the type checker!), and that the sequence of leaves is
unaffected under ra and ra’. Formally, the correctness is expressed by

(i) rat=t and ra tt' = Ctt
(ii) "leftnested (rat) and
“leftnested t' == “leftnested (ra’ t t’)

where

== is the least equivalence relation induced by the law C (Cxy)z= Cx (Cy z),
leftnested (A x) = false

leftnested (C t t') = ~(atomic t & “leftnested t’)

atomic (A x) = true

atomic (C t t') = false

One may now easily prove correctness assertions (i) and (ii) by induction on the structure
of t. Thus by defining

gt="f(rat)

we have a function g that is equivalent to f but avoids left nested applications of ¢ in the
computations.

4. A slight improvement

The solution g just found in the previous section is quite "modular™: the two subtasks of
exploiting the associativety and of computing the required result are programmed
separately (in functions ra and f respectively) and then combined into one function g.
Thanks to the method of lazy evaluation the intermediate data structure, (ra t), will never
be present (stored) in its entirety. Instead, that intermediate result is "produced” piece by
piece and "consumed" by f at the same speed. (Actually, under the usual implementation of
lazy evaluation it is the computation f that demands ra to yield further parts of its result.)
Nevertheless, the computation steps to construct the intermediate result (ra t) and to
inspect (destruct) it (by f) are to be performed and thus slow down the entire, joint, com-
putation. We shall now avoid that intermediate data structure altogether by combining the
separate subtasks (exploiting the associativety and computing the required result) into one
function g. Inspired by the previous solution we aim at definitions of functions g and g so
that

(¢) gt=f(at)
gt(ft)=f(ra' tt)

where = means that the left hand side specifies the same computation steps as the right

-5-

hand side except for the intermediate synthesis of a (T %) -value by ra and the subsequent
analysis of that value by f. Thus = expresses a very strong kind of equivalence. An alter-
native way to express (#) may be got by using the semantics of ra and ra’ (see (i) and (ii)
in the previous section); this gives

() gt=ft and
gt(ft)=f(Ctt)

(ii') (gt) and (g’ t r) do not specify left nested applications of c,
provided that r does not so.

[[One can not express (ii’) by using semantic equivalence only, as we did for ra and ra’.
The reason is that by definition the type definition (T #*) constitutes a free algebra and (T
*) -values are uniquely expressible by means of A and C applications. In contrast with
this, there are several distinct ways to express values by the operation ¢ (in particular ¢ x
(cy z) = c (c x y) 2). so that a predicate leftnested’ defined by, amongst others, leftnested’
(c x y) = "(atomic x & “leftnested y) doesn’t make sense, (and is inconsistent indeed!).]]

Remark.In a previous draft of this paper we began the elimination of left nesting by
aiming at (i’) right from the beginning, motivating it by "it is an Eureka step". Now,
Section 3 provides through the functions ra and ra’ for a thorough motivation of (i').
Fortunately the introduction and design of ra and ra’ need only more basic Eureka’s,
if any at all. (End of remark).

Based on the design goal (#) it is now straightforward to assemble or derive an inductive
definition for g and g'. We find

g(Ax) ||=f(ra(Ax)) required
||= f (A x) by def ra
=ax by def f
gctt)
||= f(ra(Ctt')) required
||= f(ra" t(rat’)) by def ra
|=g t(f(rat’)) by induction
=g t(gt) by induction
g (Ax)r
|= f (ra" (A X)) required, assuming r = f t’
l=f(C(Ax)t) by def ra
l|=c(f (Ax)) (ft) by def f
=c(ax)r
g (Ctt)r
||= f(ra" (Ctt)t") required, assuming r = f t”
||= f(ra" t (ra’ t t'")) by def ra’
||= g t(f(ra" tt"”)) by induction
=g t(g t(ft”)) by induction
=g t(gtr)

Of course, we can also prove the correctness by directly using the associativety of ¢ and
not using ra and ra’. For example, the proof of (i) for g’ runs as follows:

g (Ax)(ft)

= c(ax)(ft) by def g’
=c(f(Ax) (ft) by def f
= f(C(Ax)t) by def f
g (Ctt')ft")
=g t(g't (ft")) by def g’
=g t(f(C t't")) by induction hypothesis
=f(Ct(f(C t't"))) by induction hypothesis
=c(ft)(c (ft') (ft)) by def f
=c(c(ft) (ft)) (ft") by associativety of ¢
=f(C(Ctt) t") by def f

5. A slight simplification

The solution of the previous case is completely satisfactory for the general case. However,
the definitions may be simplified slightly when there are additional laws for the data we
are working with. In particular this is so if there exists a neutral element 1, for c, that is ¢
x 1, = x for all x. If such a neutral element 1_for c exists, then we may define

gt=gtl

g - as before
The correctness g' t (ft') = f (C t t) is proved exactly as we did at the end of the previous
section. For the proof of gt = f t we reason as follows. Let 1. be a hypothetical value
"defined” by 1, = f 1. Then

gt=g't1 by def g
=g t(f1) by def 1.
=f(Ct1) by correctness g’
=c(ft) (f1) by def f
=c(ft) 1 by def 1.
=ft by def 1,

Remarkably, the value 1. = f ~11_only plays a role in the correctness proof; it is not used
in the definition of g or g'. If 1. really exists and satisfies C x 1. = x, then we can also sim-
plify the definition of ra:

rat=ra't 1
ra’ :- as before

The correctness proof is easy; and this definition leads immediately to the definition of g
given a few lines above. (Accidentally, one can define 1. in Miranda as follows:

Teu=As*|C(Ts*)(Ts) |1
Cx1l.=>x D

6. Application: flatten

The canonical definition of the well-known function flatten reads as follows

flatten (A x) = [x]

flatten (C t t') = flatten t ++ flatten t’
Thus (flatten t) yields the left-to-right enumeration of the values in the leaves of the tree
t. As remarked in the introduction, x-+y costs #x cons-operations, so that (x++y)++z costs

more than x++(y+z). yet yields the same value. So it pays to eliminate the left nesting of
+ and the program transformation of the previous sections yields:

flattent =fit []

i(Ax)r=xr |=[x]+r

fi(Ctt)r=flt(it'r)
Actually, function ra performs the same task as flatten: it constructs a "flat” tree with the
same sequence of leaves as the original one; see Figures 1 and 2.

flattent =rat

ra (Ax) =Ax
ra(Ctt)=ra"t(rat’)

ra (Ax)r=C(Ax)r

ra (Ctt')r=ra"t(ra"t'r)

7. A word about infinite data

We have proved the various correctness assertions by induction on the structure of the t-
arguments. Soft =gtand gt (ft') =f (C t t') have been proved for all finite t. If t is
infinite, the equalities may fail. We give three examples.

1. Let c x y = 1. Then c is associative.
Let t,, be defined byt, =Ct,t,.Nowft ,=1butg t, =1.
2. Let
f(Ax)=][x]
f(Ctt)=ft' Hft
te =Cto (Ax)
Then f to, = X1 X1 X;: ...but gt = 1.
3. More generally, if the left branch of t is infinite then (g t) diverges.

Literature

van der Hoeven, G.F., Hand-outs bij het college Functionele Talen, T.H. Twente, april-mei
1986. (In Dutch)

Meertens, L., Towards programming as a mathematical activity. In Proceedings CWI Sym-

posium on Mathematics and Computer Science, CWI Monographs Vol. 1 (J.W. de
Bakker, M. Hazewinkel, J.K. Lenstra, eds), North-Holland, 1986, pp 289-334.

