Technische Hogeschool Twente

MEMORANDUM INF-86-18

BACKTRACKING AND BRANCH-AND-BOUND
FUNCTIONALLY EXPRESSED.

M.M. Fokkinga.

Juni 1986

Twente University of Technology
Department of Informatics

P.O. Box 217

7500 AE Enschede

The Netherlands

Onderafdeling der Informatica

Backtracking and Branch-and-Bound functionally expressed

ABSTRACT

We develop a program scheme in a functional language with lazy evaluation for
the kind of algorithms which are usually called Backtracking algorithms and
Branch-and-Bound algorithms. Several examples are given, amongst others the
Eight Queens Problem and the Problem of the Optimal Selection,

CONTENTS

1.
2.
3.
4,
5.
6.

Introduction

Notation

The Eight Queens Problem

Backtracking treated schematically
From Backtracking to Branch-and-Bound
The Problem of the Optimal Selection

Appendix A, Stable Marriages

Appendix B. Optimal Partition

Appendix C. Well-balanced Partition

Appendix D. Imperative program for the Eight Queens

Appendix E. Correctness proof of Branch-and-Bound

Literatne

Page

w -

11
14
18
23
28
32
35

3

1. Introduction

"Backtracking" is a problem solving method according to which one
systematically searches for one or all solutions to a problem by repeatedly
trying to extend an already found approximate solution in all possible ways,
Whenever it turns out that such an extension fails, one "backtracks" to the
last point of choice where there are still alternatives available. For most
problems it is of utmost importance to predict already very early that an
approximate solution can not be extended to a full solution, so that a huge
amount of failing trials can be saved. This is called cutting down the search
space. It may diminish the running time of the algorithm by several orders of

magnitude,

Now suppose that it is required to find not just any one or all solutions, but
an optimal one. In this case one can apply the same method, be it that every
time a solution is encountered the search space can be reduced further: from
then onwards one need not try to extend approximate solutions if it is sure
that their extensions can not be as good as the currently optimal one., In this

case one speaks of "Branch-and-Bound",

The above description of Backtracking and Branch-and-Bound is rather
operational., It is indeed a description of the sequence of computation steps
evoked by the program text, or taken by a human problem solver. It is not at
all necessary that the program text itself clearly shows the "backtracking"
steps and the "bounding" of the search space. On the contrary, the program text
need only show that the required result is delivered; the way in which the

result is computed is a property of the particular evaluation method.

We set out to develop, in a functional language with lazy evaluation, program
schemes for typical Backtrack and Branch-and-Bound problems. It will turn out
that the Backtracking behaviour, which may be attributed to the program
evaluation, is got almost for free thanks to the "Lazyness" of the evaluation,
The main technique used in the program development is "filter promotion"; this
technique has a much wider application than just the Backtracking area. In
order to obtain the Branch-and-Bound behaviour we transform a Backtrack program
in a way that we have not seen in the functional programming literature to
date,

The remainder of this paper is organized as follows. Our motivation and our

notation for sets and bags, besides lists.is given in the next section. Then,

)

in Section 3, we treat the Eight Queens Problem as a particular instance of
Backtracking. In Section 4 Backtracking is treated more generally and schemati-

cally. In Section 5 Branch-and-Bound enters the picture —--in a general and

schematic way--, A particular example of Branch-and-Bound is given in Section

é: The Problem of the Optimal Selection. In Appendices A through C several é

other examples are given,

I thank Therese ter Heide-Noll for careful typing of the manuscript,

' Thqug
2. Notation ; \/Muawﬁlﬂv f‘l‘unu 4385:'[_Lekee

Sywkox; #is 5 so cose to convembiowal M«MLW.M\M wotehow that it neesls wo €%ly
By way of experiment we shall try to avoid overspecification by using sets, Hqégﬁ

bags and lists where appropriate. (Bags are lists in which the ordering is
irrelevant; one might also say that bags are sets in which the members have
multiple occurrences.) Our experience, obtained by the present paper only, is
that a suitable use of sets and bags indeed simplifies some refinement steps in
the program development, but requires some additional thinking too; (we
sometimes fell in the pitfall of chosing sets where bags were necessary). From
a theoretical point of view there are also problems concernlng the nondeter-
minacy which arises; we shall return to this point below,

@afﬁpﬁuéafsaNuk/wﬁs
Our'notation/f; heavily influenced by the work of Meertens [Meertens 19851].
Actually, we are convinced that his notation is far superior to ours!! The only
advantage of our proposal is that it is closer to what is present in current

functional languages.

We use the symbols { } and £ § and [] for sets, bags and lists
respectively. The list operations :, 4+, # and —- are extended to bags and sets

in the canonical way. Thus e.g.

a:{a,b,c} i a:fa,b,cd ! a:[a,b,c]
={a}++{a,b,c} i =fa3++ka,b,c,} i =[al++[a,b,ec]
={a,a,b,c} { =fa,a,b,c} i =[a,a,b,c]
={a,b,c} { =fa,b,a,cd i 4[a,b,a,c]
={b,c,a} { #€a,b,c] i #[a,b,c]

We shall allow the colon and set/bag/list -brackets in formal parameters. A set
S matches (x:X) if S is nonempty, say with member s; then x may stand for s and
X denotes S--{s}. So the following function counts the number of elements in a

set.

count {} = 0

count (x:X) = 1 + count X.

For practical, notational convenience it seems very important that funct:ions
are polymorphic in the sense that they may accept both sets and bags and lists.
To this end, we use the brackets {), possibly subscripted, to denote
polymorphically either a set or a bag or a list, (but within one definition the

same brackets denote the same thing.) Hence, we may define

count {) = 0O

count (x:X) = 1 + count X

Then (count X) = #X for any set, bag or list X. More generally we use {)
whenever the context determines uniquelly what kind of bracket is meant; in

particular this holds for set-, bag- and list-abstractions.

On semantical grounds we require that all generator domains of a set-
abstraction are sets, and similarly for bag-abstractions and list-abstractions.
It is however allowed to write a list where a bag is required, and to write a
bag where a set is required. The implicitly applied conversion is obvious. The
conversion the other way around must be written explicitly by a prefix
superseript Y. Thus for a set S, 'S is a bag (uniquely determined) and

'S is some list (some enumeration without duplicates). So we may define

set-to-bag {} = £3
set-to-bag (x:X) = x: set-to-bag X

bag-to-list €3 = []
bag-to-list (x:X) = x: bag-to-list X

Then for a set S and bag B, 'S = set-to-bag (S) and B = (bag-to-list B)

and YB = Vs,

Finally we need to say some words about the set and bag abstractions. In order
that these constructs truly correspond to the mathematical notions, it is
required that the various generators in the abstraction each get a fair chance,
So

{(1,3) 1 i <= 1[1..]1, j <= [i..]}

really denotes the set in which each pair (i,j) with i>1 and j>i occurs. If we
replace the comma by a semicolon, then this is meant as a directive to the
evaluator to give precedence to the second generator; i.e, the generator
processes are still fairly interleaved, but e.g. after each value generated for
i, the number of values to be generated for J may be doubled. (And if the
domain of j is finite, the evaluator may generate all values of J after each
one for i.) By this replacement we may possibly improve the time and/or space
efficiency of the computation. We shall not use a comma between the generators

of a list,

Nondeterminacy enters the picture by having a set split into some member and
the remainder, when used as argument for a parameter (x:X). Note, however, that
we shall only make a very modest use of it: mostly we avoid overspecification
by using determinate sets rather than nondeterminate elements. (Presumably one
can avoid nondeterminacy altogether up to the very last action of the
computation, where some member of a set is taken nondeterministically.) Notice
for instance that the functions count and set-to-bag are deterministic! We

shall also allow guards to be non-exclusive.

In view of the nondeterminacy, semantic equality of two expressions now means
that both expressions allow for the same input/output behaviour; the possible
outcomes of both expressions, including nontermination, are the same. In order
that nondeterminacy is practically manageable (in proving semantic equalities),
it seems necessary to require "environmental transparancy", i,e, in each
defining clause and each expression different occurrences of the same variable
denote the same (nondeterminate) value, (and not different values). In the
context of lazy evaluation this can be achieved very easily by the sharing

feature of lazyness, cfr [Fokkinga 1985].

We have no formal proof system for semantic equivalence which deals with nonde-
termincay. Nevertheless we have the strong feeling that the claimed semantic
equalities really hold true. (At least one thing is definitely true: the left
and right hand side of definitions are semantically equal, so that definitional

equality implies semantic equality,)

3. The Eight Queens Problem

In this section we treat the typical Backtracking problem, well-known as the

Eight Queens Problem. In the next section we shall generalize what we do here

for this concrete example,

The problem is to place 8 queens on a 8x8 chess board in such a way that no
queen is in check of another. As you know a queen covers the squares of the

row, the column and both diagonals in whieh it is placed.

We shall represent the placement of one queen by a pair (i,j) where i is the
row number and j the column number of the queen's square. The placement of
several queens is represented by a bag of the individual placements, (thus
allowing that two queens occupy the same square), For these representations it

is easy to formulate the tests whether one queen (i,j) is in check of another

o Wn,,,fg%~{'/
——— —— .,..:\
check (1,3) (1',3") = i=1' \/ 3=3' \/[d+j=i'+j' \/ i-j=i'=j' <:::ji
Skl — 1)
P)

(i',J'), and whether a placement p is legal:

legal p = all {~ check q q'{ q,p'<<~ p; q'<{p)

Notes. 1. The generator x,Y <<~ X generates in x the elements of X (with the
right multiplicity and order if X is a bag or list), and in Y the remainder,
not ranged over by x yet. So, if at any time (x1,Y1), coey (xn'Yn) are

the values generated so far, then X = x1:x2:...:xn:Yn. It easy to

define a function Heads-and-Tails so that X,Y <<~ X can be written (x,Y) <-
(Heads-and-Tails X).

2. We could have defined legal more abstractly by

legal p = all {~ check q q'} q <~ p, q' <= p-={q)).

The given definition is equivalent to this one thanks to the symmetry of check,

We shall now develop a program that yields a set LP of all legal placements of
8 queens, In case only one solution is requested, one may simply write (hd LP);
thanks to Lazy Evaluation the set LP is not computed beyond its very "first"

element!

We start with a definition of LP which is almost the problem specification
itself:

LP = {p | p <~ P 8; legal p}

PO = {{)}

Pn={qp | q<-Q, p<P (n-1)}, n>
{(i,3) 1+ 1 <= {1..8}, j <= {1..8}}

Notes. 1. (P n) yields the set of all placements of n queens on the board.

2. We write a comma in between generators of an abstraction if the order is
irrelevant; we may later choose a particular order to control the computation

and improve the efficiency,

This program for LP, although being correct, is practically worthless: set

(P 8) has 864 members, all of which have to be subject to the legality test.
Even if only one member of LP is asked for, and hence only a fraction of (P 8)
has to be considered, the running time of the algorithm is far too large to be

practical: moderate fractions of 86u are still very large indeed,

So we need to improve the efficiency., We shall try to replace the sets involved
in the construction of LP by much smaller sets, by omitting members which
cannot become legal placements of 8 queens. There are two mutually independent
possibilities to do so: one is to avoid placing two queens on the same 523§;e
and the other is to "promote" (part of) the legality test into the definition

of P. We shall first treat the latter and then the former,

We observe that any extension of a partial placement p <- (P n) will be illegal
if p itself is already illegal. So we aim for smaller sets (P' n) equal to {p |
p <= P n; legal pl, (to be defined without referring to (P n), of course). We
can easily construct (P' n) from (P'(n-1)); but knowing that the members p <~
(P'(n-1)) are already legal, it suffices to test only whether the new n-th

queen is acceptable with respect to p. Thus we are led to define:

LP = {p | p <= P' 8; legal p}

= (P' 8)
P' 0 = {g%}
P'n={q:pp | q<-Q, p < P' (n-1); acc q p}, 0<n

Q = {(i,J) | 1 <~ {1..8}, j <~ {1..8}}
ace q p = all {~ check q q'}! q'<- p)

Note. One may verify that (P' n)z={p | p <- P n; legal pl} indeed. Hence the
outermost legality test in LP is superfluous.

7
Next we reduce sets (P' n) once.more to smaller sets (P" n), thereby increasing
the efficiency of the algorithm again. We observe that: (i) the order of queens
within a placement p is irrelevant (actually p is a bag!), and (ii) for any p
<= LP it is true that p only contains queens with different row numbers. So we
may constrain the choice of q in the definition of (P' n) to a particular row

uniquely determined by n, say the n-th row., This leads to:

LP = P" §
P" 0 = {g3}
P'n = {(n,j):p | j <~ {1..8}, p <~ P" (n-1); ace' (n,j) p}, 0<n

ace' q p = all {“check' g q' | q'<-p)
check' (1,J) (i',3') = j=j' \/ i+j=i'+3j' \/ i=jzi'=j'

Note. The reduction of (P' n) to (P" n) also allows to increase the efficiency
of the acceptability test: by construction no two queens in a placement are in

the same row, hence the test i=i' is omitted.

At this point there doesn't seem to be another obvious possibility for further
reduction of the sets involved. So let us now argue (rather vaguely, we admit)
that the program thus obtained really evokes a "backtracking computation". To
this end we notice that whenever during the computation a member of some (P" n)
is demanded, the possibilities of j <- {1..8} and p <~ P"(n-1) are computed (in
some unspecified order) until (ace' (n,j) p) succeeds. The placement (n,j):p is
then delivered and future demands for further members of (P" n) will only
consider the remaining possibilities for j and p. This systematic, hierarchi-

cally organized search is really backtracking.

The program development is however not finished. It turns out, as you might
expect, that in general the generation of a next member of (P" n) involves much
more work (namely generation of part (P" (n-1)) and hence also part of (P" (n-
2))y «esy (P" 0)) than the generation of a next member of {1..8}. Assuming that
the pairs (Jj,p) satisfying (ace' (n,j) p) are distributed quite randomly over
the cartesian product {1..8}x(P" n), it is more efficient to search that
cartesian product while economizing on the number of generations of elements p,
that is giving the generation of elements j some (or complete) precedence over
the generation of p's. Thus we control the computation further by specifying a
preferred order for the generators in the definition of (P" n):

v
P"n = {(n,3):p | p <= P" py j <= {1..8}; acc' (n,j) p}

Notes 1. If the evaluation of a composite generator x <- X, y <~ Y proceeds by
dove-tailing the sequences of computation steps of x <~ X and y <~ Y, then the
evaluation economizes automatically on the more expensive generator! (Stef
Joosten has brought this to my attention,) Nevertheless, a specific order is
needed if one wants to implement sets by deterministic lists and then the above

reasoning certainly applies. Also, an explicit preferred order might improve

|
|
|
|

é%éﬁ’%

i P
fors

=1is
&3

b

the space requirements of the computation, (as Gerrit van der Hoeven has
remarked). We shall not pursue this topic here.

2. The semicolon between generators of a set abstraction has no semantic
meaning. It is to be considered as a directive to the evaluator. Within list

abstractions, of course, the semicolon is semantically significant,

We have completed the development of a program for LP; we conclude this section
by presenting a (quite different?) program for essentially the same algorithm.
This version has advantages for the development of Branch-and-Bound algorithms
and for the development of imperative programs, The main idea might perhaps be
described as "doing the recursion bottom-up rather than top-down" or as
"performing parameter accumulation", (similarly the transformation of
the canonical definition of the Fibonaceci function to the tail recursive one) .
We shall define a set (P1 p n) of all extensions of the partial placement p
with queens in rows n, n+1,...,8. Formally, the relation between P" and P1 is

given by: for each n in 0..8
(P" 8) = {p' | p <= P" nj p' <= Py p (n+1)}

The definition reads as follows:

9
Py pg = {p
Py pn={p'" i j<-{1..8}; ace' (n,j) p; p'<-P4((n,3):p)(n+1)}, n<8

The correctness is easily proved by induction on 8-n, and actually the
correctness proof and the development of the definiton could have gone hand-in-

hand. Now we may define LP also by LP = P1{21.
We shall call the form of the definition of P1 "elementwise iterative". The
usefullness of this version will become clear in the next section, and in

Appendix D where imperative implementations of P" and P1 are given,

4, Backtracking treated schematically

In this section we redo the program development of the previous section in more
general terms. Thus we shall obtain a program scheme for Backtracking problems.
We shall not strive for the utmost generalization, for that would give
notational and presentational problems. Rather it is the development of the
program scheme that serves as an outline to follow when trying to solve a

particular problem. In the next section the treatment is extended to Branch-

and-=-Bound.

In general terms formulated, the problem is to yield some or all members of a
certain set S. Characteristic of the Backtracking problems is that a superset
of S can be approximated inductively by sets So, S1, 52, cesy SN’ with
SN2 S, where

- SO is explicitly known

- for 0<ngN, S = {cons) x s | x <~ C, 5 <= Sp_1}
Here Cn denotes the set of possible choices for x and cons, is some
constructor (possibly but mostly not dependent on n). For the Eight Queens
Problems we had S, = (P n) = "the placements of n queens on the 8 x 8 board",
Chb = Q= 1{1..8} x {1..8} and cons, = "adding an element to a bag" (denoted
by :). Notice that one may even generalize the construction of the sets Sn
and of their members; for example one could have (consn X Sq ..o sk)
rather than (consn x s) and more importantly, sometimes some conglomeration

of parameters;~say~pa:m4 plays the role of n (and some function,@eeﬁ/plays the
role of substraction), (see Section 6 and Appendices A,B,C).

So we may now define

S = {s | s <= Sy; legal s}
Sp = een

(7]
]

{eons, x s | x <- Chs» 5 <= S,_4}, 0<n
The legality test should succeed only and precisely for those members of the
superset SN which indeed belong to S, The entities legal, cons,, SO' Cn

and N depend on the particular problem,

Given the above program one should now seek methods to reduce the sets involved
so that the efficiency of the algorithm increases accordingly. This can make a
difference of several orders of magnitude! One of the most generally applicable
ways is "filter promotion",., For example, one may try to extend the legality
predicate to the approximating sets Sn so that legality of an approximate
element S, 1s a necessary condition for the legality of a full extension

s 6 SN of S, formally,

- for 0<n<N, s & Sn-1’ X & Cn:
legaln (consn X 8) ==> legaln_1 s

- and for s & SN:

10

legal s ==> legal, s.

N

Having found such legality predicates, we define

S={s | s <= Sﬁ; legal s}
S5y = {s | s < Spi legaly s}
Sn

{eons) x s | x <~ C,, s <- Sp-13 legal, (cons, x s)}, 0<n

(It is now easy to prove by induction on n that Sp=1s1is < Sps
legaln s}. From this it follows that the above definition of S is equivalent
to the original one). With suitable legality predicates the sets Sa invol-
ved in the construction of S are much smaller than the original sets Sn' SO
that the algorithm is much more efficient, Moreover, there may also exist
"cheap" acceptability tests ace, such that (legaln_1 s) & (accn X s) =

legaln (consn X s)., Thus we redefine

S! = {cons_ x s | x <= Chr» s <=8

n n ace,_ x s}

5-1; n

The program so obtained exemplifies the typical Backtracking behaviour in its
evaluation, It may however be improved further by promotion of still other
parts of the legality or even acceptability tests. There may also be an
opportunity to reduce the sets involved in quite different ways which are
peculiar to the problem at hand. One example has already been given in the
Eight Queens program; another example of further improvement is shown in

Appendix B,

Another, heuristic, way of improving the efficiency concerns the order of

generators in the definition of the sets Sﬁ. In general the time needed to

generate a next member of C, is independent of n, but the time needed to %ddfawu~
generate a next member of Sﬁ increases (quite rapidly) with n because of A Wk
the recursion (i.e. the sets 83 Siv eeey 55_1) involved. So we Y, 5

Wk

should economize on the demands for further members of SA; that is to say,

°

we should let x <=~ Cn vary fastest and s <~ Sg_1 vary slowest. Thus we
refine the definition of Sﬁ by imposing a specific order on the generators:
Sp = {consn XS | s <= Sp_qs X <= Cns ace, x s}

Finally, as we did for the Eight Queens program, we shall now give an

alternative formulation of essentially the same algorithm., The idea is to do

the recursion bottom-up rather than top-down. Thus we aim at a function Sg

11

such that (S; s) extends the element s (which should be a member of Sg)

in all possible ways to elements of Sﬁ; formally, for all n
Sy = {s" | s < Spe S' <= Sheq s}
so that in particular Sy = {s" | s «- S§» s' <= 8% sl.

The definition may now be inferred by attempting to prove the above correctness

statement by induction on N-n. We find

§+1 s = {s}

Sp s = {s' | x<=Cp; acc, x s; s' <= Sp4q(eons, x s)}, n<N
We shall need this formulation in the development of the Branch-and-Bound
version; it is also usefull for further transformation into an imperative

program,

5. From Backtracking to Branch-and-Bound

In this section we continue the development of the previous section, after a
slight adaptation of the problem formulation; namely it is now requested to
yield an optimal member of S rather than all members or Jjust one, We assume
that some pre-order £ between the members of S is given; optimality is then
nothing but maximality with respect to L. In the next section The Problem of

the Optimal Selection is treated as a concrete example,

Obviously, the optimal solution can be expressed formally as (Max S) where S is

defined as in the previous section and Max is defined by

Max {s} = s
<s
£ Max S

Max (s:S) = s, Max S
Max S, s

Note. Max is indeterminate for two reasons; the guards do not exclude each
other and moreover, even if one of them is replaced by "otherwise", the outcome

of Max (s:S) depends on the way the argument set is decomposed into s:S.

Unfortunately this program requires the construction of all members of S,
whereas at each point of time during the evaluation only those members of S
need be constructed which are at 1east§§6od as the maximal element czonstructed &(

thus far. In other words, we would like to bound the remainder of the search

12

space dynamically by using the currently found maximal solution as a criterion.

This we shall do now.

By way of preparation, suppose that a member m of S is known, playing the role
of the maximal one found thus far. Can we then reduce the sets Sﬁ without

the danger of omitting elements necessary for the construction of the ultimate
(Max S)? Clearly, (Max S) = Max (m: {s | s <~ Sys m £ s}), (assuming for
simplicity that (legal s):(legalN s)). So we may try to promote (part of) the
filter m < s into the inductive definition of the SA. To this end we assume
the existence of preorders Sn on S x SA so that m $h s is a necessary
condition in order that s can be extended to s' ¢ S with m S.é;k Moreover we

assume that there exist predicates prom, (from: promising) such that
m<pqSé&promy xsm = m £n (eons, x s)

for s & Sé and x & Cn with ace, X s, Now we can define sets (mSn

m) (from: majorizing m):

mSy m = {s | s <- S m &y s}

mSn m = {consn X S| X <= Cn, s £= mSn_1 m; ace, X s & prom x s m}

n
and it is easy to show that for arbitrary m € S, (Max S) = Max (m: mSy m) .

This completes the preparatory step.

Next we have to try to choose the m-arguments for mSn in the best possible

way, and in particular so that at each point during the evaluation the m-
argument is the maximal element produced so far. It seems impossible to achieve
this using the above recursive version (at least, we can't succeed); but for
the elementwise iterative version we succeed quite elegantly. So, first

consider the elementwise iterative version of mS,, called mS!.

mS&+1 ms = {s}

mSp ms = {s' | x < Chs acc, x s & prom, X s m;

s' <- er']+1 m (consn x s) }, n<N
We transform this definition into a definition of a function Msn such that
MSn ms = Max (m: mSA m s)

The definition reads

13

MSy,1 m s = Max {m, s}

MS, ms = last M, n<N
vhere
M=m: [m" | (m",x) <~ zip M nCn;
let ap = ace, x s & prom, x s m;
let m" = m', “ap
= MS .4 m (consn X s), ap
]

last [x] = x

last (x:X) = last X, X#[]

zip X [] = []

zip (x3X) (y:Y) = (x,y): zip X Y

Notes. 1. The let-construct let x =zexpr is short for x <- [expr] or rather x <-
[x wWhere x=expr]. In the above text they can also be brought to the expression
part of the list abstraztion in the form of a where construct,
2. The list YYC, is some nondeterminate enumeration of the set Cp -

we
In Appendix E we sketeh a formal correctness proof of (MSn m s) = Max (m:
mSA m s); let us here explain the definition informally. First of all
notice the strong similarity with the definition of msg;
been obtained from msg by some textual transformation. Next consider the

MSn has indeed

locally defined list M. From its definition we see (by induction) that each
member m", computed from (m',x) <~ zip M nCn, is the successor of m' in

the list, so that #M = 1+#C, . Further, using (MSn+1 m' (econs, x s)) = Max
(m': mSp,.q m' (eons, x s)) as induction hypothesis, we see that

m" > m', so that list M consists of successively better and better elements.
Moreover, each member of (msa m s) is majorized by at least one element of

M, so that indeed Max (m: mS) m s) = last M = (MS,, m s).

A requested optimal/maximal member of S is now given by (MS1 my Sq),
where m, is some real (or hypothetical, see below) member of S and {so} is

SO‘ In case S0 is not a singleton set, we need to write

last M
where

M = my: [MS1 ms | (m,s) <= zip M “SOJ

The initial "eurrently maximal element" m, need not be a real member of S. It

14

is only used in the program for comparison, via the promising test, and it may
well be the case that only one component or one aspect of it need be defined.
If however no better element in S exists, it is my that is delivered. So care
should be taken in subsequent computations. We shall see applications of this

technique in Appendices B and C.

Finally, we rewrite the definition of MSn so as to obtain a more conventional
form: we eliminate the intermediate list M. To this end we introduce an
auxiliary, local, function lastM which performs the tasks of last and M

simultaneously., We get

MS§,q m s = Max {m,s}
MSp m s = lastM m nCn, n<N
where
lastM m' [] = m'
lastM m' (x:C) = lastM m" C

where ap === as above ===

’ -
m" = === as above ——- (rsan ek Ha*ltff s

6. The Problem of the Optimal Selection

In this section we develop a program for the Optimal Selection problem along
the lines sketched in the previous section. The problem is typical for Branch-

and-Bound.

There is given a bag B containing N objects; each object x & B has its own
weight (w x) and value (v x).*

It is requested to make a selection of the objects so that their aggregate
weight does not exceed a given limit W and their aggregate value is as large as

possible,

It is not hard to cast the problem into the general terms used in the schematic
treatment of Backtracking and Branch-and-Bound. For example, after numbering
the objects, the set of all selections, both legal and illegal, is just the

powerset of {1..N} and we might express this set by (powerset N) where

%) Assuming that "objects" are by definition mutually different (because their

identities differ), one could also take a set S of objects.

niy

15

{{1}

powerset n = {x ++ s | x <-= {{n}, {}}, s <~ powerset (n-1)}

powerset 0O

So, in this case 'cons' is 'append' and C, = {{n}},{}}. It seems however more
natural to treat the two choices for x separately and have the objects rather

than a number as parameter of powerset. Therefore we define

pset {) = {{}}
pset (x:X) = {x:s | s <- pset X} ++ pset X

Consequently we cannot merely instantiate the program schemata of the previous
section, but have to redo the development again., The problem may thus be solved
by

Max {s | s <~ pset B; legal s}
where legal and < (in terms of which Max has been expressed) are given by

legal s = wgt s LW
s {s' =val s { val s'
wgt s = sum fw x| x <~ s3 %)

val s = sum fv x| x <~ s

Clearly this program is impractical for it demands the inspection of all 2N
subbags of B. Even for moderately small values of N this will take too much
time. Fortunately it is easy to reduce the sets involved considerably by
promoting the legality test into the construction of selections; for once a
selection is illegal, it can't become legal any more by adding elements., So we

define the sets of legal selections:

sel {) = {{)}
sel (x:X) = {x:s | s <~ sel X; acc x s} ++ sel X

ace x S = W Xx + wgt s <W.
and the problem is now solved by Max (sel B).

Now we shall apply the technique of Bounding the search space, as given in the

previous section. We first give the elementwise iterative version of sel.

#) In case s is a set rather than bag, one should write s instead of s.

16

sel' s {) = {s}

sel' s (x:X) = {s'| acc x s; s' <~ sel' (x:s) X} ++ sel' s X

Next we need to transform this definition into one of a function msel so that
(msel m s X) = {s'| s' <~ sel s X; s'> m}. To this end we need a "promising"

predicate; in the construction of selections an approximate or partial selec-
tion s looks promising only if its value together with the value of the still

remaining objects is at least the value of m. So we define

msel m s () = {s}
msel m s (x:X) = {s' | ace x s; s' <- msel m (x:s) X}
++ {s' | prom s X m; s'<- msel m s X}

prom s Xm=val s + val X > val m
Finally we transform msel into Msel so that
Msel m s X = Max (m: msel m s X)
The transformation scheme is given in the previous section. The actual instance
here is somewhat simpler, because the set Cn contains only two choices and

these are dealt with separately in msel, The definition thus reads:

Msel m s {) = Max {m, s}
Msel m s (x:X) = m2

where m1 = Msel m (x:s) X, ace X s

= m » otherwise

m2 Msel m1 s X, prom s X m

= ml , Ootherwise

An optimal selection is now given by (Msel {) {) B). This completes the

major development of the program. What remains is some minor improvements such
as the addition of some redundant parameters denoting (val m), (val s), (wgt s)
and (val X) in order to avoid frequent recomputation of these values; (an
easier but less efficient method to avoid these recomputations is to memoize

the functions wgt and val).

Note, (for the expert semanticist only). Semantic equivalence, denoted by the
symbol =, means that both sides yield the same value if they are determinate

and yield the same possible values if they are indeterminate. In this sense the

17

equality (Msel m s X) = (Max (m: msel m s X)) holds. When the righthand side
(Max {m,s}) in the first clause of Msel is replaced by s alone, then (Msel m s
X) 2 x for any x € X but ——assuming X is a list-- it will yield the last such

element of X and is therefore not semantically equal to Max (m: msel m s X).

18

Appendix A, Stable Marriages

The problem statement

There are given N men and N women, numbered 1 through N respectively 1+N
through 2*N. Each person has its own preference list for the persons which
he/she would like to be married; (prefs k) is the list of person k, and this
list enumerates the persons of the other sex in order of decreasing preference,
Computable from prefs, as well as the other way round, is the function rks
(from: ranks); (rks k k') gives the place of k' in the preference list of k,
i.,e. for all k and k' of different sexes, (prefs k)!(rks k k') = k, (we use !
to denote list subscription). It is requested to arrange a marriage of the men
with the women so that no two marriages are instable, We call two marriages
(i,3) and (i',j') instable if i prefers j' to J and at the same time also j'

prefers i to i':

instab (i,J) (i',3') = rks i j'<rks i j & rks j' i < rks j' i'

Notice that instab is not symmetric in its arguments.

The program development

Our first program is very close to the above problem formulation; it is an

executable specification, Define

pair {} {} = {{}}
pair X Y = {(x,y):P | (x,y) <-X*Y, P <~ pair (X-={x))(Y—{y})}
stable P = all {"instab p q | p <~ P, q <= P—{pl}

= all {"instab p q & “instab q p | p,P'<<-= P, q <= P'}

Then one has all solutions to the marriage problem in hand by {P | P <~ pair
{1..N} {N+1..2%N}; stable P}. Of course, X*f = {(x,y) | x <= X, vy <~ Y},

We see now two mutually independent ways to improve the efficiency: one is to
improve the definition of pair and the other is to apply filter promotion., We

deal with them in order.

Improvement of pair. By definition sets cannot contain duplicate elements, so
somewhere in the construction or the use of sets an equality test has to be

done. The above definition of pair generates in many ways one and the same set;

19

or in other words, had the members of (pair X Y) be bags or lists rather than
sets, then (pair X Y) would contain many duplicates! We can avoid those
duplicates by construction; for example by restricting the choice for x to one
(nondeterminate!) possibility. At the same time we shall represent pairings by

bags so that the equality test are avoided indeed.

pair {} {} = {g3}
pair (x:X) Y = {(x,y):P | y <= Y, P <~ pair X (Y—(y))}

Filter promotion, We observe that an instable pairing P cannot get stable by
extending it. We may therefore reduce the sets considerably by promoting the
stability filter:

pair {} {} = {3}
pair (x:X) Y = {(x,y):P | y <~ Y, P <= pair X (Y—(y)); ace (x,y) P}
ace p P = all {“instab p q & “instab q p | q <= P)

(Remember, an abstraction {...!...) is a list, bag or set according to the

kind of the generator domain.) This completes the major steps in the program
development. We shall now speed up the algorithm once more by a factor of about
two, by halving the instability tests. We observe

ace (i,j) P

all {“instab (i,j) (i',j') & ~instab (i',j") (i,J) | (i',j') <= P)

all {“instab (i,3) (i',j') | (i',j') <- P) &

all (“instab (i',j') (i,j) | (i',j') <= P)

= all (“instab (i,j) (i',j') | j'<-prefs i; married P J'; let i'=partner
Jj' P} &
all (“instab (i',j') (i,J) | i'<-prefs j; married P i'; let j'spartner
i' P)

Here, married is to be a function such that (married P J) = true

precisely when there is some pair (i,j) in P, and similarly for (married P i).
Analogously, (partner j P) = the i such that (i,j) & P. (Note that P is a bag
whereas (prefs i) is a list; the abstractions change accordingly from bags to
lists,) Now we see that in the first conjunct the j's are enumerated in order
of decreasing preference of i, so that initially (rks i j' < rks i j) is
steadily true and finally steadily false. So we need only enumerate (prefs i)
upto j itself; the test (rks i j' < rks i j) will yield true for all these

values and can therefore be omitted. A similar reasoning applies to the second

20

conjunct, We thus get

pair :- as before but with acc'! instead of acec
ace' (i,j) P
= all {rks j'id>rks j'i'| j'<-upto j (prefs i); married P j'; let i'=partner
j' P} &

all {rks i'j>rks i'j'} i'<-upto i (prefs j); married P i'; let j'=partner
i' p)
upto x () = {)
upto x (y:Y) = {), x=y

= y: upto x Y, x#y

The test (married P j') can be implemented as j' @ Y where Y is the set

(bag or list) of women not yet married; this set is available at the place of
invocation of acc' and can be given to acc' as an additional parameter. The
test (married P i') can be implemented analogously, but there is a better
method too. The current program has a set X, initially {1..N}, as argument for
pair. There is no objection to keeping that set in increasing order, that is to
represent that set by a list, without duplicates, initially [1..n]. It then
happens that we can implement (married P i') simply by i'< x where [1..x] are
the men already married; this x is available at the place of call of acc' and
can be given as an additional argument to ace'. It remains to implement

partner, One possible definition reads

partner k P where (k',j)

"
(3N

hd {(k',3) | (k',3) <= P; k'= k}, k<N
hd {(i,k') ! (i,k') <= P; k'= k}, k>N

= i where (i,k')

Another possibility is to represent P as an array [1..2%N] of 1..2*N so that
P[k] = (partner k P). This representation is the obvious choice if one wants to

implement the above algorithm in a Pascal-like language,

We conclude this section by presenting the elementwise iterative version, All

stable marriages are given by (pair {} 1 {N+1..2%n}), where

pair P x {} = {P}, x=N+1
pair P x Y = {P' | j<-¥; ace'(x,J) P; P'<-pair ((x,3):P) (x+1) (Y—[Jj1)}, x<N

ace' :~ as before

Note. The x-parameter of pair stands for the list [x..N].

* %k %

21

An implementation in Pascal, based on the above elementwise iterative version
of pair, reads as follows. The P and Y parameters of pair are available as the

values of global variables Partner and Y respectively.

var N: integer;
prefs : array [1..2%N] of array [1..N] of 1..N¥#2;
rks : array [1..2*N, 1..2%*N] of 1..N;
{only rks[x,y] with x € 1..N & y 6 N+1..2%N and
X & N+1..2*N & y & 1..N are needed}
--initialize N and prefs and compute rks--

var Y : array [N+1..2*N] of boolean;
Partner: array [1..2*N] of 1..2%N

procedure pair (x: integer);
var j: integer;
function ace (i,j: integer): boolean;
var a: boolean; {function result}
i',j': integer;
t, tlimit: integer; {loop variablel}
begin a := true;
t 2= 1; j' := prefs [i,t];
while j' £ j & a
do if not Y[j']
then a:=rks [j',i] > rks [j', Partner[j']] fi

12

’
t := 15 tlimit := rks [j,i]; i' := prefs [j,t];
while t # tlimit & a

do if i'< x
then a := rks [i',j] > rks [i', Partner[i']] fi
od;

acc := a
end {acc};
begin if x= N+1 then output-Partner else
for j := N+1 to 2%N
do if Y[j] then if acc(x,j)
then Y[j] := false; Partner[x] := j; Partner[j] := x;

pair (x+1);
{Partner[x] := Partner[j] := undef;} Y[j} := true

22

f1fi
od fi

end

-=-the main call reads—-

for j := N+1 to 2*N do Y[j] := true od; pair (1)

23

Appendix B, Optimal Partition

There is given a set S of objects, each object x having the value (v x). It is
requested to partition the objects into M groups. We shall number the groups
with 1,.M and define for a partition P and m & 1..M:

grp P m = the objects in the m~th group of P

val Pm = sum v x | x <~ Ygrp P m }

maxv P = max {(val Pm | m <- {1..M}}
Actually, the request is not simply to yield a partition, but to yield a

partition P for which (maxv P) is minimal.

Our first duty is to formulate the requirements as clear as possible, The value

requested is (Min (parts S)) where

parts () = {emptyPartition}
parts (x:X) = {add m x P | m <~ {1..M}, P <~ parts X}
Min :- standard, defined in terms of P < P!

P < P' = maxv P < maxv P!

We shall postpone choosing a representation for partition as long as possible;
consequently we cannot define empyPartition and add, but we can fomulate the

essential property which they should satisfy:

grp emptyPartition m = {} for all m 6 1..M
grp (add x P m) m'

grp Pm', m" #m

Xs grpPm', m'" =m

Next we observe that two partitions which differ only in their numbering are to
be considered the same. This, at least, seems to be the intention in the
problem statement, Notice, for instance, that the numbering is introduced only
to facilitate the definition of maxv, and that maxv itself is independent of
the particular numbering used. (Exercise. Reformulate the problem statement and
the program obtained so far, avoiding the numbering completely; let a partition
be a bag of sets.) Let us therefore try to reduce the sets (parts X) (thus
increasing the efficiency of the algorithm), by generating only nonequivalent
partitions. Suppose (negparts X) is the set of nonequivalent partitions of X;
how can we form (neqparts (x:X))? Let P, P' 6 (neqparts X) and m £ m'. .
Clearly (add m x P) and (add m' x P) are equivalent if both (grp P m) and (grp
P m') are empty; a simple exchange of the m-th and the m'-th group transforms

the partitions into each other. Conversely, assume (add m x P) be equivalent to

24

(add m' x P'), say via renumbering r. In view of the uniqueness of object x, it
must be true that r renumbers m into m' and that (grp m P) equals (grp m' P').
Hence we find that P and P' are equivalent via r, For P # P' this cannot be
true, because P and P' & (neqparts X). So P' equals P and, again in view of
the uniqueness of objects, r can only exchange the numbers of empty groups; it
follows that both (grp P m) and (grp P m') are empty. Therefore, in order to
construct (negparts (x:X)), the choice for m with (grp P m) empty should be
restricted to precisely one possibility; say the minimal such value. So, m is

to vary over
{1.. min {M, legP}}

where (leg P) = number of least numbered empty group of P, (taken to be M+1 if
no group is empty). Thus

neqparts {) = {emptyPartition}
neqparts (x:X) = {add m x P | m <~ {1..min{M, leg P}},
P <~ neqgparts X}

(We shall define leg together with add, grp and emptyPartition.) The value
requested is (Min (negparts S)).

Next we want to apply the Bound technique of Section 5. To do so, we need the

elementwise iterative version of neqparts. This one reads

neqparts P {) = {P}
negparts P (x:X) = {P' | m <~ {1..min{M,leg P}},
P' <~ neqgparts (add m x P) X}

From this we make the version mneqparts such that
neqparts P X 3 mnegparts Q P X > {P' {P' <~ neqparts P X; P' <Ql

for any partition Q of all objects. Fortunately, the relation £ can be easily
extended: an approximate partition P is doomed to be worse than Q if (maxv P)
already exceeds (maxv Q); this can be formulated by means of the original
(definition of) < between full partitions., Now, if P < Q then (add m x P) < Q
is equivalent to (grp m (add m x P)) < (maxv Q), i.e. (val P m) + v x < maxv Q.

Hence,

25

mneqparts Q P {) = P
mnegparts Q P (x:X) = {P'{ m <~ {1..min{M,leg P}};
prom x m P Q;
P' <~ mnegparts Q (add m x P) X}

prom x m P Q =val Pm+ v x < maxv Q
This then is tranformed into the final program in the standard way. We get

Mnegparts Q P {) = Min{Q,P} --0or even P itself
Mnegparts Q P (x:X)
= last Qs
where
Qs =Q: [Q" i (Q',m) <~ zip Qs [1..min{M,leg P}];
let prm = prom x m P Q';
let Q" = Mnegparts Q (add x m P) X, prm

~

= Q' ’ prm

and the requested partition is expressed by
Mnegparts Qo emptyPartition S

where Qo is some "hypothetical" partition such that (maxv Qo) is infinite
or at least large enough, say sum v x | x <~ 'S3. Of course, we can also
construct some real partition Q, by e.g. distributing S evenly over the M

groups:

Q, = last Qs
where
Qs = emptyPartition: [add (1 + n mod M) x Q |
(Q,x,n) <~ zip (Qs, ''s, [0..])]

It remains to give a representation for partitions and to define
emptyPartition, add, leg (and possibly Qo) accordingly. There are umpty ways
to do so. We shall work out here the choice to represent a partition P as a

two-tuple, consisting of

- the value (leg P), and
- the 1list [(grp P 1, val P 1), ..., (grp P M, val P M)]

26

Then

emptyPartition = (1, [({}, 0) | m <~ [1..M]])
grp P m = group where P = (leg,list); (group,val)

list!m

val Pm

val where P = (leg,list); (group,val) = list!m
add m x P = (leg',list')
where (leg, list) = P
(group, val) = list!m
leg' = max {m+1, leg}
list' = take list (m=1) ++
[(group',val')] ++
drop list m
group' = x : group

val' = v x + val
It is also easy to define the hypothetical partition]

Q, = (donteare, ({1}, maxnbr): [({}, 0) | m <~ [2..M])

But actually we had better improve the program slightly by adding an extra
parameter to denote (maxv Q), and, if done so, we can simply call the program

with maxnbr for this parameter and let Qo completely undefined.

Note. An inexperienced programmer may be tempted to exploit the knowledge of
the representation given above elsewhere, If that is not the intention, then
this unintentional use of the representation can be made illegal by adding the

following abstract data type definition.

absttype Prepr

with emptyPartition :: Prepr;
val :: Prepr => Nbr => Nbr
- grp $: Prepr => Nbr -> {objecttype}
leg :: Prepr => Nbr
add :: Nbr -> objecttype -> Prepr -> Prepr

and defining, say together with val, grp, and so on:
Prepr == (Nbr, [({objecttype}, Nbr)]

Finally we present the imperative program suggested by the above functional

27

program, We shall represent a partition by two arrays, one giving for each
object the group to which it belongs and another giving for each group the
value., The leg-value of the partition is available as value-parameter; the
arrays are globally available., The objects are identified with the numbers
1..N, and the value-parameter n represents the set n,.N of objects still to be

distributed over the groups.

var Q,P : array [1..N] of [1..M];
maxvQ : integer;

valP : array [1..M] of integer;

procedure Mneqgparts (n:integer; leg: 1e.M+1);
begin if n = N+1
then Q := P;
maxvQ := 0; for m to M do maxvQ :+ valP [m] od
else for m to min (M, leg)
do if valP [m] + v(n) < maxvQ
then P[n] := m; valP[m] :+ v(n);
Mneqparts (n-1, max(m+1, leg));
{P[n] := undef;} valP[m] := v(n)

end

The main call should read

maxvQ := maxint;

for m to M do valP[m] := 0 od;
Mnegparts (1, 1);

output (Q, maxvQ)

28

Appendix C, Well-balanced Partition

A set S of objects is given, each object x having weight (w x). We consider

three problem statements: it is requested to partition the objects in two

groups such that

a. the difference in weight between the groups is minimal;

b. that difference is zero, (if such a partition exists);

e, that different is again zero but this time with the additional requirement
that the difference in number of objects in the groups is maximal.

We shall treat variants (a), (b), (e) in succession. We shall be very brief in

our explanation, because the problem looks quite similar to the problem of the

Optimal Partition, treated in Appendix B.

Variant (a).
We use P to denote a partition, (L,R) to denote the left and the right group of

a partition. Some auxiliary functions of general utility are:

Max :- standard, defined in terms of P < P'

P < P' = abs (dw P) > abs (dw P')

dw (L,R) = wgt L - wgt R --difference in weight
wgt X = sum €w x | x <- X}

A best-balanced partition is now given by (Max (parts S)) where
parts {) = {({), (D}

{(x:L, R) | (L,R) <~ parts X} ++ {(L,x:R) | (L,R) <~ parts X}
{p | (L,R) <~ parts X, P <= {(x:L,R), (L,x:R)}}.

parts (x:X)

Actually we have been overspecific: a partition should be a bag of two groups
rather than a tuple of two groups. So partitions (L,R) and (R,L) are considered
to be the same, or equivalent. We may reduce therefore the set (parts S) by a
factor 2 by generating only nonequivalent partitions, say by fixing one element
into the left group.

parts' () = {({), (N}
parts' (x:X) = {(x:L,R) | (L,R) <~ parts X}

The required result is now (Max (parts' S)). The elementwise iterative version

of parts! reads

29

parts' {} = {({), ()}

parts' (x:X) = parts ({x),{)) X

parts P {) = {P}

parts (L,R) (x:X) = parts (x:L,R) X ++ parts (L,x:R) X

Next we look for a necessary condition in order that an approximate
partitioning P can be extended with elements from X to a full partitioning that
is at least as good as a given partitioning Q. The --or rather one such--
condition is that the lightest of the two groups of P can be made so heavy with
the remaining elements that, on a balance, its pan is below the lightest pan of
Q:

prom (L,R) Q X = dw (X++L,R) > -abs(dw Q) , dw(L,R) < 0
= dw (L,X++R) < +abs(dw Q) , dw(L,R) > 0
An alternative formulation of this same condition is
prom (L,R) Q X = true y —adw < dwP < +adw
= dw (X++L,R) > -adw , dwP < -adw
= dw (L,X++R) < +adw , dwP 2 +adw

where
adw = abs (dw, Q)
dwP = dw (L,R)

This enables us to define mparts so that (parts P X) 2 (mparts Q P X) o {P' H
P' <~ parts P X; Q < P'}, provided that the last set is nonempty. (Actually the

second inclusion is an equality.)

mparts' Q () = {P | Q < P} where P = ({), (})
mparts' Q (x:X) = {P' | prom P Q X; P' <- mparts Q P X}
where P=({}, {}))
mparts Q P {) = {P}
mparts Q (L,R) (x:X)
= {P | prom (n:L,R) Q X; P <~ mparts Q (n:L,R) X} ++
{P | prom (L,n:R) Q X; P <~ mparts Q (L,n:R) X}
= {P | P' <~ {(n:L,R), (L,n:R)}; prom P' Q X; P <~ mparts Q P' X}

This definition then is transformed to the required definition of Mparts so
that (Mparts Q P X) = (Max (Q: mparts Q P X)).

30

Mparts' Q {) = {P | Q < P} where P = ({), {))
Mparts' Q (x:X) = Q, “prom ({x),{)) Q X

Mparts Q ({x), {})) X , otherwise
Mparts Q P {) = Max {Q, P} -—or simply P

Mparts Q (L,R) (x:X) = Q2

vhere

Q1 = Mparts Q (n:L,R) X , prom (n:L,R) Q X
=Q , otherwise

Q2 = Mparts Q1 (L,n:R) X, prom (L,n:R) Q X
= Q1 , Otherwise

A best balanced partition is delivered by (Mparts! Qo S) where Qo is some
--possibly hypothetical-- partition, Actually only (dw Q,) need be defined;
nothing else of it is used by Mparts. And only if no better partition exists,
Qp will be delivered; (this requires to replace Max{Q, P} by P in the first
clause of Mparts). So we may even choose a hypothetical Q, With (dw Qo) =

0; in this case (Mparts Qo S) yields a well-balanced partition if it exists

and Qo otherwise. Thus variant (b) is solved as well.

Variant (ec).
Now it is requested to yield a partition with no difference in weight between
the groups and a maximal difference in numbers of elements in the groups. So

the comparison relation between partitions reads

P < P'" = abs (dw P) = 0 & abs (dc P) £ abs (de P')
de (L,R) = #L - #R --difference in cardinality

We shall avoid equivalent parititions by forcing #L to be minimal and #R to be
maximal. (This choice of avoiding equivalent partitions allows for a better
adaptation of prom than the choice to fix one specific element in one specific
group.) What necessary condition can we think of for an approximate partitio-
ning to be extendable to someone that is better than Q? Again, the lightest of
the pans of P must be made heavy "enough" (as with variant (a) and (b)), but
this time not with all remaining elements X but only with the k heaviest from
them, where k is the maximal number of objects still allowed on that pan

(without becoming worse than Q). So we define

Hst X k
Lst X k

the k heaviest elements from X

the k lightest elements from X

31

prom (L,R) (LQ, RQ) X
= #L < #LQ & #RQ < #R & prm

vhere

kL = #LQ - #L --maximally to be added to L

kR = #RQ - #R --minimally to be added to R

prm = dw (Hst X k1 ++ L, Lst X kR ++ R) > 0 , dw (L,R) <0
= dw (L, X ++ R) < 0 » dw (L,R) >

The remainder of the program outline is the same as in the previous variants,
Let us therefore consider only Hst and Lst. If we keep the argument X of
elements still to be distributed, sorted in order of decreasing weight, then
Hst and Lst are quite simple to define and to compute, For example, for

Hst' X k = wgt(Hst X K):

Hst' X 0
Hst' (x:X) k = w x + Hst X (k=1) , k> 0

If we now also make Hst' into a lazy memo function, see [Hughes 1985], then
frequent recomputation is eliminated at once. Alternatively, we may compute
beforehand a table with for each tail X of the sorted list S' and for each
suitable k the value (Hst' X k) as entry.

This can be done in n2 time, where n = #3.

Further details are left to the industrious reader.

32

Appendix D. Imperative program for the Eight Queens

In this section we present imperative Pascal-like programs inspired by the

functional programs developed in Section 3. Recall those programs:

LP = P" 8
P" 0 = {g3}
P" n = {(n,j):p | p <~ P" (n=1); j <~ {1..8}; ace' (n,j) p}, 0 < n

ace! q p = all {~ check' q q'} q' <- p}
check' (i,3) (i',3") = j=j' \/ i+j=i'+j' \/ i-j=i'-j'

Pypn={p'" i j<- {1..8}; ace'(n,j) p; p' <~ Pi((n,j):p)(n+1)}, n < 8

acec', check' :- as above,

We shall first transform the latter into an imperative program. Our aim is to

have one globally available array in which at each time the current argument p
of P1 is stored. We assume that the output, the placements of 8 queens, has

to be printed.
var p : array [1..8] of 1..8;

proc Py (n: integer);
{p[1..n=1] is significant at entry}
begin if n=9 then output(p)
else for j := 1 to 8
do if ace (n,j) then
begin pln] := i
P, (n+1)
{p[n] := undef}

end

end
The main call should read: Py (D).

Notice the close correspondence between this imperative formulation and the

functional program. In particular the generator j <- {1..8} now appears as for
J =1 to 8.

It is slightly problematic to translate the first functional formulation into a
Pascal-like language, if we still insist on using one global array to store the
arguments of P"., The way out is to give P" an additional parameter, namely the
process to be performed on the results of P", The generator p <-= P"(n-1) is
then translated as a single call with the process "j <- {1..8}; ace' (n,j) p"

as additional argument,

var p: array [1..8] of 1..8;

proc P" (n: integer; proc process);
{all possible/legal placements are generated in p[1..n]
and each of them is subject to 'process'}
Proc new-process;
begin for j := 1 to 8
do if acc (n,j) then
begin p[n] := j; process {; p[n] := undef}
end
od
end;
begin if n=0 then process else P" (n-1, new=-process) fi
end

main call: P" (8, output-p)
The use of the additional process parameter seems a bit unconventional. We can
avoid it by translating the functional program into coroutines; in the present

case P" becomes a recursive coroutine., We use the notation of [Tennent 19811].

var p: array [1..8] of 1..8

coroutine P" (n: integer);

var more: boolean; -~accessible from outside,
initial ~-just a key-word.
var j: integer; --private local variable,
begin

more := true;

if n=0

34

then detach --gives control back to caller.
else Q.P" (n=1); --recursive activation, named Q.
while Q.more --the 'more' variable of Q.

do for j:=1 to 8
do if ace (n,j)

then pln] := j;

detach
fi
od;
eall Q —gives control again to Q,

——(resumption of Q)
fi;

more := false; detach

main call: Qo P"(8);

while Qy.more do output-p; call Qo od

35

Appendix E. Correctness proof of Branch-and-Bound

Here we shall prove the correctness of the most tricky transformation, namely

(MS, m s) = (Max (m: mS, m s)) where MS, and mS, are defined by

= {S}

mS, ms = {s' | X<=Cp3 apy i s'<=-mS,,q m cons,}, n<N

m3N4q m

7]

MSys1 m s = Max {m, s}
last M, n<N
where

M=zm: [m" | (m',x)<=zip M Cy;

MS, m s

let m" = m' ’ “apx’m.
=M, .1 m consy , apy pvl

Note that the above function mS, is called mS), in Section 5. The proof is

independent of the expressions 3Py ,m' and consy; we have indicated the
occurrences of x and m in these expressions by subseripts, so that substitution
of ¢ for x and m for m' can be denoted by apc'm and cons,. The free occur-

rences of s and n in 3Py ,m and consy are not explicitly indicated,

5ePESHE FDR.F94E by, induetion on Neton.

MSN+1 m s

{def MS} Max {m, s}
Max (m: {s})

{def mS} Max (m: mS

N+1 m s)
The case n<N is less simple; the remainder of this appendix is devoted to it.

The induction hypothesis reads

M MSn+1 m s = Max (m: msn+1 m s) for all m, s.

We shall use this in the following lemma.

Lemma
Let C be finite

and M = m: [m" | (m',x)<= zip M Y'C; let m" = m' ,'apx'm,

=MS, .1 m cons, ,apy]
Then last M = Max (m: {s' | x<-C; 8Py ,m; S'<-mSp,q m consy})
proof

By induction on the structure (or legnth) of ‘(.

36

Case Y'C = []. Then last M = last (m: []) = m =

Max (m: {}) = Max (m: {s' | x<={}; ===}) q.e.d.
Case Y'C = c:C'. We distinguish two subcases.
subcase "apc’m holds:

last M

={def M,C} last (m: M')

where M' = [m" | (m',x)<-zip (m:M') (c:C'); let m" = —==]

={expanding M'} last (m: my: M")

where m, = m {because “ap, p holds}

1
M" [m" | (m',x)<=zip M' C'; let m" = —=-]

:{last,m1} last (m: M")

where M" :- as above
={induction hypothesis of the Lemma}
Max (m: {s' | x<=C'; Py ms s'<-mS,, q m cons,})
={because "apc’m holds}
Max (m: {s' | aPq mi s'<-mS;,q m cons,} ++
{s' | x<=C'; Py m s'<-mS, , m cons,})
=Max (m: {s' | x<-c:C'; Py m s'<-mS, . 4 m cons,}) q.e.d.
subcase apc'm holds:

last M
={def M,C} last (m: M')
where M' = [m" | (m',x)<-zip (m:M') (c:C'); let m" = —==]
={expanding M'} last (m: m,: M")
where my = MS, . m cons, {because g ; holds}

M" = [m" | (m',x)<-zip M' C'; let m" = —=-]
={last, induction hypothesis (1)} last (myz M")
where m, = Max (m: mS, , m cons,)

M" :- as above
={induction hypothesis of the Lemma}
Max (Max (m: mS,, 1 M eons,):

{s' | x<=C'; Py mi s'<-mS,,, m cons })
={property of Max}
Max (m: mS,,q Mmeons, ++ {s' | x<-C'; apy i s'<-mS, 4 m cons, })
={because apc’m holds}
Max (m: {s' | x<=-c:C'; Py m s'<-mSn+1 m consx})
=Max (m: mS, m s) q.e.d.

This completes the proof of the Lemma.

Now the induction step in the main proof is simple:

MSn ms

37

={def MS} last M

where M = m: [--= YC ___;

={lemma, taking C=Cn}

Max (m: {s' | x<-Cp; apy p; S'<-mSp,q m consy}

=Max (m: mS, m s) q.e.d

This completes the main proof,

Literature

Fokkinga, M.M., Nondeterminisme moet lazy zijn.

Hand written note, dec 1985,

Hughes, J., Lazy memo-functions, In Functional Programming Languages and

Computer Architecture, (ed JP Jouannaud), Springer-Verlag, LNCS 201, (1985)

pp 129-146

Meertens, L., Algorithmics - towards programming as a mathematical activety,

Proc, CWI Symp on Mathematics and Computer-Science, CWI Monographs Vol 1
(eds JW de Bakker, M Hazewinkel, JK Lenstra), North Holland, 1986, pp 289-

234,

Tennent, R.D., Principles of Programming Languages.

Prentice-Hall, 1981.

