PRIVE

s

Specifying precedence relations using a two-level grammar

Maarten M. Fokkinga, 27 febr. 1980.

Abstract. Usually the priority or precedence of operators, and of arbitrary
composition schemes for expressions, is modelled within the context free
grammar of a language by choosing distinct nonterminals for each priority
class. This however gives rise to derivations (parse trees, productions trees)
in which semantically redundant steps occur. We show, by means of an example,
how the priority relations can be modelled in a simple two level (2VW)

grammar such that the derivations do not contain semantically redundant

steps.

The example grammar. Consider the following grammar Gl for a subset of Pascal.
1. expr : simple expr , relational operator , simple expr ; simple expr .

2. simple expr : simple expr , adding operator , term ; term .

3. term : term , multiplying operator , factor ; factor .
4

. factor : open par , expr , close par ; variable.

Before proceeding, we first remark that the nonterminals, occurring in the

lhs of rules 1 : 4, actually denote the priority classes and that one also

might wish to introduce four additional nonterminals in order to name each compo-
sition scheme. Consider e.g. grammar G2:

A. expr : relation ; simple expr .

B. simple expr : addition ; term

cC. term : multiplication ; factor .

D. factor : pack ; variable

a. relation : simple expr , relational operator , simple expr.
b. addition : simple expr , adding operator , term .

c. multiplication : term , multiplying operator , factor .

d. pack : open par , expr , close par .

The following derivation (horizontally written parse tree), contains

semantically redundant steps.

expr simple expr term factor variable
L4 J e e ® e
sem. action: none none none deref

We would like amongst others to derive a variable directly from an expression:

expr variable

This means that we need many more rules which enable (and force!) us to
shortcircuit the semantically redundant steps (viz. the choice of the 2nd
alternative in rules 1 : 3)

This is not difficult to achieve. Taking the second grammar as a staring
point, we select just rules a : d and eliminate by means of rules A : D
all occurrences of the nonterminals denoting the priority classes. This

yields 39 rules.

A two level grammar, however, provides a convenient way to denote a big set
of rules in a compact way. Rather surprisingly, the very above manipulation
is implicit in a two level grammar derivation. Thus the following

grammar G3 does the job.

Meta level (here characterizing the priority classes and priority relations)
A. EXPR :: relation ; SIMPLE .

B. SIMPLE :: addition ; TERM .

C. TERM :: multiplication ; FACTOR .

D. FACTOR :: pack ; variable .

Hyper rules (corresponding to semantic actions)

a. relation : SIMPLEl , relational operator , SIMPLE2 .

b. addition : SIMPLE , adding operator , TERM .

c. multiplication : TERM , multiplying operator , FACTOR .

d. pack : open par , EXPR , close par .

The number of production rules is 39 (recall : production rules are obtained
from hyper rules by eliminating all metanotions), and each semantically
irrelevant derivation according to Gl has been short-circuited by a production
rule of G3. The price paid is however very modest, for the actual rules
written down correspond uniquely to those in G2 and there is also a one-one
correspondence between derivations in G2 and "derivations in G3 when

specified at the meta and hyper level". In fact, we have only introduced

names for semantically relevant composition schemes, and distinguished these

names and their rules from those dealing with syntactic priority.

It remains to be seen whether the eliminatién"of semantically irrelevant

production rules has practical advantages.

Note 1. Although parentheses have no non-trivial semantic effect, we consider

them "semantically relevant". This is a consequence of the postulation that

"anything explicitly occurring in the program text has (should have) some
meaning”, one of the possible Meanings being qun't change". ("Don't change
the state" is denoted by "skip", "don't change the value" by parentheses).

It is however possible to eliminate rule d from G3 . To this end, erase

the first alternative of rule D and add three alternatives to each of rules

a : c, giving "open Par, EXPR, close par" instead of respectively the left

operand, the right one, or both. (End of note 1.)

Note 2. The converse of the postulation of note 1 reads "every semantic
action has (should have) some explicit representation in the program text".
This forbids e.g. implicit coercions, and we think both postulations to be

a valuable design objective for programming languages. (End of note 2.).

03 '_}mt 3/-3-80:

bn“&gegh dr medlauwdhovs Q&i? L 4 J%ﬂ“z('
Gz M%p\,mssztg f w overald _exprssion P
WOROWS . L

b(tb ve.c.?m:
(&) SHREasge, codibom-agodihh TER

A W 3
@) odotibonerpriion : SIPLE. cxpeshvn, odd 2p ., TERM-expreih

wAL su[hé»h~ﬂ2 waig
G g ﬁwﬁxm o lulunrple va Hy
(i) ot it sigels 7 IS T
i ke oty clane W g MASEL
62 w VoG £ Pg(o FKOTAU-Y
W &‘ % . W\/‘M

Om &M M\/o

&Ba@%

I‘W&A:W WW ’Wac' < {0/,)2) 3)
produches Sem_w;rzxcao vegels

S— E k/ac(E/:: o
E - l::/ <E, prec (5)= ﬁ/c((@)h
14 ~

prec (Bz)i= pree()+

E o 5+ £ }vmc[/%).':pvcc(E,,/
g 74

prec ()1 prec (FDAH
0

prec (By) 2 prec(65)
pree(By) <= precin)ty

z)=
——)(E,;) mc(ﬁ)- 4

EO
Y
£

L&MM,":T{ZL-V ([t “ ‘6_(

Prec(gp) = &

prec(2.) s 7

prec(b) <2

(prec() s 2)

(W‘(E—»)S:?)

Tl)”Voéwmlc Lo plisheins oue. lfoe«‘e

/'\J(T',T\g\,,i&—dlf Te melde ., wiasa, lak é/&% APy o

Joost Bugelfiiet

