=

MEMORANDUM NR. 281

SOME SELF-REPRODUCING ALGOL-LIKE
PROGRAMS AND KLEENE'S RECURSION
THEOREM FORMULATED IN CONCRETE
PROGRAMMING LANGUAGES

MAARTEN M. FOKKINGA

SEPTEMBER 1979

Department of Applied Mathematics,
Twente University of Technology,
P.0O. Box 217,

7500 AE Enschede, The Netherlands

ONDERAFDELING DER TOEGEPASTE WISKUNDE

TECHNISCHE HOGESCHOOL TWENTE

Techo Rep.
&ﬁ‘SFfﬁﬂ%a&Jthvdb ﬁk%ﬁh»»&
?;oéw— pb/’ /o, rﬁf/’ chuuv,Art‘w

Contents Page
1. Introduction 1
2. Some self-reproducing Algol 60 and Algol-like programs 3
3. The Recursion Theorem 7
4. Applications 12
4.1. A self-reproducing Algol 60 program 12
4.2. A formulation of theorem 3 in HET 14
4.3. A formulation of theorem 3 in the lambda calculus 16
4.4. A formulation of theorem 3 in LISP 18
References 20
Abstract

We give some self-reproducing Algol 60 and Algol-like programs. We show
that one of them can be derived quite formally from Kleene's Recursion
Theorem. To this end we reformulate the theorem and its proof in terms of
manipulations on program texts, wherever possible, rather than on indices
of functions. As further applications the theorem is formulated in terms
of the language HET, the pure lambda calculus and LISP. We consider our
understanding of the decades old proof as the main achievement of the work

done.

1. Introduction

Spwre

It was just for fun that we gewe—timerwage constructed some elegant self-
reproducing Algol 60 programs. The programs print out their own text,

layout inclusive, and do not use any representation of characters other

than strings. When we set out to record them in a short note and were about
to write the introduction, we made severe attempts to find some motivation
for the interest in self-reproducing programs, but we could only provide

the following weak one.

A self-reproducing program is a program the semantics of which is defined

in terms of in its syntactic form.(There is also no better proof of its
correctness than a test run:.). For forﬁg%;ggeﬁs which allow the expression

of all partial recursive functions, Kleene's Recursion Theorem of the Theory
of Recursive Functions, asserts that such programs exist, and it gives as
well a construction for them. The construction requires a coding of

programs into manipulatable objects, i.e. into some data type of the language,
and a so-called s-m~n function which, given a code of Ax,y. £(x,y) and

a value v , yields a code of Ay. f(v,y) . For Algol-like languages

the canonical coding of programs into integers may lead to the manipulation

of unfeasably large values. So it is of some interest whether a direct

construction of a small size program is possible or not.

[Meertens 1974] claims to have found his self-reproducing HET program by
following Kleene's construction as reported in [Van Emde Boas 1974]. However,
we failed several times in our attempts to do it in a fully systematic way.
Moreover, we got thereby the feeling that also one of our self-reproducing

Algol 60 programs should be derivable from the proof of the Recursion Theorem.

S0 we set out to derive at any cost our and Meertens' self-reproducing

programs from Kleene's construction.

In [Kleene 1952] a very specific formal language and a very specific coding
have been chosen. In [Rogers 1967] no syntax assumption at all has been made;
not even an "abstract syntax" is mentioned. In addition, both theories deal

with fuﬁiions on natural numbers only. We however want to deal with programming
languages in general, with several data types, and we also want to abstract

from the particular coding. We have succeeded in a very systematic transcription
of the classical proofs of [Kleene 1952] and [Rogers 1967] into a form which,

whenever possible, manipulates program texts rather than their codes.

Surpriy%ingly, the resulting proof is intuitively very clear and understandable,
whereas the classical proofs, although equally short and correct, seem hard

to understand; see e.g. [Van Emde Boas 1974].

The main achievement of our work is that we now do understand the classical

proof. We are able, for instance,

- to identify the entity in the abstract construction which takes care of
the concrete constraint that quotes within strings have to be written twice
(, or have a special denotation),

- to explain why Meerten's program contains occurrences of the so-called
universal function whereas our Algol 60 program doesn't do so,

- to see at the abstract level the consequences of peculiar syntax constraints
(like the obligation to declare procedures, in Algol 60; the option to
embrace within begin and end; and in general the full syntax of the language
which might be very different from a pure applicative language),

- to obtain "semantical fixed points" of any data type, whereas the Recursion
Theoretic construction only yields (codes of) functions.

In short, we are now able to apply the Recursion Theorem to any language

whatsoever. Anyone who does already understand the proof had better stop

reading now and derive self-reproducing programs himself.

The remainder of the paper is organized as follows. In section 2 we give some
self~reproducing Algol 60 programs{ In section 3 we transcribe Kleene's
Recursion Theorem and its proof into a formulation which makes explicit use
of a -~ very high level -~ programming language.

In section 4 we apply the theorem to obtain a program given in section 2,

and we give its formulation in HET, the pure lambda calculus and LISP.

Acknowledgement

We thank Joost Engelfriet for helpful comment and stimulating interest.

2. Some self-reproducing Algol 60 and Algol-like programs

We assume that there is no distinction between a left quote and a right

quote; however for readability we do use three representations: ¢, ', § .

In the construction of the program®the main problem is caused by the
appearance of special symbols which within a string, have a special
denotation. We treat the following three conventions.

1: Only quotes have a special denotation: they have to be written twice;
line feeds and other layout characters within a string are significant.

2: Characters Cl,..,Cm (Cl being the quote) have special denotation
DENl,..,DENm . Example: m=2 , the denotation of quotes and line feeds
are 'Q' and 'L' . If the line feed has a special denotation then é:j)
has no significance within a string -- Jjust as in the remainder of the
program text --.

3: Characters Cl,..,Cm (Cl being the quote) have no denotation: they can

only be written by standard procedures writecl,..,writecm.

The following program, for convention 1, is a structurally improved version
of [Fokkinga 1973]. Strings do occur in write commands only. See figure 1.
At the price of a longer text the layout of the resulting program may
be improved as follows. The layout of the first six lines may be changed
at will; this affects the texts of the box as well, because that consists
of the "same text as above...". Thus we can arrange that all write commands
_—=~—o0f the for loop body appear just below each other: insert a line feed and five

ore spaces after the second occurrence of "quote;" in the third line.

imilarly, for the tail of the program text. With some constraints, we may
also insert more program text in front of the for loop and in the tail.

The generalization to convention 2 is straightforward: eliminate (each
denotation of) each special symbol from the iteration. See figure 2.

For convention 3 we simply replace the procedure declarations of the
previous program by
proc ci; if t=1 then writeci else

begin writecl; write(®); ci; write(?); writecl end ,...

proc tail; begin writecl; write(®) end; tail end?) end .

begin
integer t;

proc quote; if t=1 then write(®''9) else write (®''); quote; write(''?);
- - -)
proc tail; write(''') end; tail end?);

for t:=1 step 1 until 2 do

begin writes}!
Same text as above but for the replacement of each quote

by: ?); quote; write(®
" (Hence there appear another 15 write commands within the

for loop body, 10 of which will print the empty string!)

?) end; tail end

figure 1:Strings only occurring in write commands.

begin

integer t;

proc cl; if t=1 then write('DENIY) else write(*DEN1); cl; write(DEN1?);
proc cm; if t=1 then write (tDENm) else write (!DEN1); cm; write(DEN1?);
proc tail; write(°®DEN1) end; tail end?®);

for t:=1 step ! until 2 do

begin write(®

same text as abpve but for the replacement of each special

[4
symbol Ci by / *%); ci; write(®

*) encd; tail end

figure 2: Generalization of fig. 1.

7

In the following programs, procedure reproduce (an anagram.:) is able
to write text, provided it is given as parameter the denotations of
strings from which the text can be built. The following mnemonics are
used: gq for quote, c¢ for comma, s0 and sl for strings (&0 is
the initial part and sl the tail of the program).

For the first convention see figure 3 below.

It is this program which reminds us of Kleene's construction; we
will indeed derive it formally in section 4. Although the comma is
not a special symbol, it seems to play a special role: it is treated
differently from sO0 and sl .

The generalization to convention 2 is straightforward. See figure 4.

The adaptation to convention 3 is left to the reader.

begin proc repro(gq, c, s0, sl); string q, c, s0, sl;
write(s0, gq,9,9,9, ¢, 9,¢,q9, ¢, 4,s0,9, ¢, g,sl,q, sl);

repro(®''s, ¢, 9, ¢ ‘

begin proc repro (q, ¢, s0, sl); string gq, ¢, sO, si;
write (sO, g,9,49.,9, ¢, 49.,c,g9, C, q,so,i, c, q,sl,q, s1);

repro (P, t) end?) end

figure 3: With string parameters.

begi Yoc repr C,7:+.4C C, Shsr--.+5_)i string c ce.yC C, S.1:-+45
gin p pXo (1’ 'Cht [0’ ' n)l g 17 1Chr] o’ '

write({llnes 1..5:} Soici ,sllci r e g sk_llci]

1 2 k
{the box: } Sgr C1CeCyv v v €y4CiCry S
{last lines:} Cyr Spr Cy ¢ 1 G r S) ;
k+1 .
repro(®DEN1®, .. , €DENm?, ¢, ?, ¢ J’Same text as outside this box,

but for the replacement of each special symbol by *, ' (possibly introducing

empty strings). It is assumed that Ci ;e Ci are, in that order, the
1 n_

symbols replaced. I’)

end

figure 4: Generalization of fig. 3.

-, D
f,xg ppevel SWZV(Ver 'fj’ b <

Basically, in procedure reproduce the naming facility of the language
is used, so that in the body the string denotation of the whole program can
be computed (and printed) without a need for an explicit occurrence of it
(which is manifestly impossible). Instead of exploiting the formal parameter
naming facility, we can also exploit other language features to achieve the same
result. The programs given in figures 5, 6 and 7 thus use multiple constant
definition (or multiple variable assignment), respectively arrays of strings

and finally substring accessibility (or: strings considered as character

arrays) . But none of these programs are legal Algol 60 texts. fo ce

begin string q, ¢, s0, sl; q, ¢, sO, sl := ¢''s, ¢, 93, ¢

begin string q, ¢, s0, sl; g, ¢, s0, sl := 2, ¢;

write(sO, g,q9,9,9, ¢, 9,¢,q, ¢, 49,s0,9, ¢, q,sl,q, sl) end?;
write(s0, gq,9,9,9, ¢, 9,C,d, C, q,s0,q9, c, q:Squr sl) end

figure 5: With multiple assignment.

begin string array s[0:2]; string g, c; integer i;

i=-1; g := ©'%; ¢c := ¢

i o= i+1; s[il := 2;

i := i+1; s[i] := ®begin string array s[0:2]; string g, c; integer i;
i:=-1; q :=9;

i = i+l; s[i] := & ¢ := 9;

i = i+1; s[i] := *;

Write(sor 9,999, Sqs 9sCsqs Cy q,solq: Cr ArSq+ds Cy ArSyedy 52) end*;
erte(sol q9,9,9,9, Slr gq,¢,q, C, CIrSOIqI Cy qlsqur Cy qrszrqr 52) end

figure 6: With arrays of strings (for brevity, subscripts have been used

instead of indices).

oA gz
¢

begin char array s[1:102]; s := ®''begin char array s[1:102]; s := ;
write(s[2:327, s[11, s[11, s[11, s[2:1021¢* s[11, s[33:102]) end?;
write(s[2:32], s[11, s[1], s[1], sf2:102], sC11, s[33:102]) end

figure 7: String considered as char array. L - 5’0L;CS

b= ©

YAe pemicdlonn. v S vcccers ad'/u»Lﬁvn.SQ_

3. The Recursion Theorem

Recursive Function Theory deals with computable functions on the
natural numbers. One assumes some formal system in which only and all
computable functions on the natural numbers can be expressed. There is some
enumeration of all formal expressions, and the meaning of the i-th
expression is denoted by ¢i ; 1 might be called the code of the i~th
program. For given £ , any 1 with ¢i=f is called an index of £
Thebfunction sll is a so-called s-m-n function, satisfying

N
¢S]-1 (x:y)
satisfying u(x,y) = ¢x(y) . The formal definitions of sl1 and u

(z) = ¢x(y,z) ; the function u is a so-called universal function

heavily depend on the specific formal system and the chosen enumeration;
cfr. [Kleene 1952] p.342. The recursion theorem now reads as follows.
Theorem l.For any computable t : Nat - Nat there exists a p : Nat

satisfying ¢p = ¢ , i.e. the p-th program is semantically equivalent

t(p)
with the t(p)-th program.

Proof. (1) cfr. [Rogers 1967] p. 180. Let s be a total function satisfying

cbs(x) - ¢¢X(x)
Indeed ¢p = ¢

and let ¢ be some index of Ax. t(s(x)) and let p = s(c)

=¢ = ¢

¢C(C) t(s(C)) = ¢t(p) . We can be slightly more

explicit about s : let 1 be some index of Ax,y. u(u(x,x),y) , then
we may define s := Ax. sl11(i,x) ..-’f‘ wht othe ’fc/ﬂu’)vbw wuj;d/ EAAt n ;%‘
(2) cfr. [Rogers 1967] p. 214 exc. 11-4,5. Let s @& Ax. sll(x,x)

and Ci;= some index of Ax,y. ¢ (y) and pg-= s(c) . Indeed

t(s(x))
O = boic) T Psttqe oy = MY Oc(C¥) = Ay ey O () IDICY) = 0 0y T
q)t‘,:(p)j . As in (1), we may define c¢ by means of u : c = some index of
=

Ax,y. u(t(s(x)),y) . (End of proof.)

In the above proofs it is crucigal that s is total. Indeed, with
s 4= Ax. ¢x(x) and c ﬁﬁ some index of Ax. t(s(x)) and p'ﬂﬁ s(c) we
may even prove p = t(p) , which seems to contradict with the possibility
t = Ax. x+1 . The paradox however is resolved by noting that s is not
total, and in particular s(c) , hence p , is undefined. In a correct
definition of s , ¢x(x) is actually a subprogram of the program with index
s(x)

Note also that t need not be total; p is defined anyway. We should

however interpret ¢ as the totally undefined function, when t(p)

t(p)
is not defined. Indeed, ¢p is totally undefined in that case.

i sl

We will now restate the theorem in a form which is more explicit, but
not too specific, about the formal language. We also abstract from the
Natural numbers and arithmetic functions as the basic and only objects.

We are forced to make some notational conventions and some weak assumptions,

.g. as follows. geect b _
e.g s follow ng/mu..:kw@

1. Program texts are written in uppercase and with square brackets onls-.

2. The language need not be untyped, like LISP; with some adaptations in the
sequel, it may be typed, like Algol 68. There is however some set of values,
(Lhe expressions for which we consider to be og data type VAL , and for

this data type also the data type of functions VAL - VAL is supposed to
exist. We denote by Val the set of denotations of data type VAL , and for
technical simplicity we consider Val to be a semantic domain as well. Thus
the meaning of an expression of type VAL belongs to Val , and the meaning
of an expression of type VAL -+ VAL belongs to Val =+ Val .

3. We let Txt be the set of "meaningful program text parts". For simplicity
you might consider any string of terminal symbols meaningful, but possibly
denoting a semantical error. Meta-variables ranging over Txt , and only
these, are written with two lowercase letters, like xx, apl, ap2 , with

a possible exception for those ranging over Val {which is E_Txt}.

4. We write the expressions for abstraction and application like typed
A-notation, using L for uppercase lambda. These notations thus need

considerable change in order to meet particular syntax rules of concrete

programming languages.
Lz : VAL. xx

should be written in Algo
[z]; VALUE z; ; and

PROC P yy'

and yy' are already adapted to the Algol 60 syntax, and

5. The meta-symbol = , when applied to operands from Txt , means
semantical equivalence. Thus VAL expressions are coerced to Val and
VAL + VAL expressions to Val 4 Val . We use = to denote syntactic
equality. The meta-symbol := 1is used for definitions; only the right
hand side is coerced, namely to the mode of the left hand side.
9

y(bhﬁ‘o We are ready for a systematic transcription. The enumeration of the
formal expressions now is an injective code : Txt + Val . We let

decode : Val = Txt be the partially defined inverse of code . For readability

.

we mostly write code(xx) as XX ,st ¢ =19 can now be

f x code (xx)
written decode(x) = xx . .

The functions and value s, sl1l1 and c¢ need all be expressed
formally. We might make explicit the dependency on the coding as follows.
Assume that code is syntax directed ("the code of a composition equals
a composition of the codes of the constituents"), and moreover that the
coding can be simulated within the language. That is, there exist
cd , ap , ap' , 1d : Txt satisfying

cdlxx] = code (xx) {= xx} . ed [x]= cedlo(x) fm" all x Vo

ap[;(:?] = xx[yl ,

— R —————e
ap'[xx,y,z] = xx[y,z] ’

ld[xx,yy]l = L xx: VAL. yy
Indeed, sl1 may now be expressed by

ssll:= | X, Y: VAL. ld[i, ap'[X,cd[Y],Z]] ,
because decode(ssll[;;,y]) = L z: vaL. xx[y,2] . The appearance of the
function cd:Txt was for us rather surprising; it takes however care of
doubling the quotes in the self-reproducing Algol 60 program. For an explicit
definition of s as suggested in proof (1) of the theorem, we need to assume
the existence of some wuu:Txt satisfying

wulxx,y] = xx[y] , or equivalently

L v : vAL. uulx,Y] = decode(x)

for now we may express s by

ss := L X : VAL. ss11[| X,Y : VAL. uuluu[Xx,x],¥], x] .
This completes a straightforward transcription. We find
Theorem 2. For any tt : Txt of type VAL + VAL there exists a p : VAL
satisfying decode(p) = decode(ttlpl)

Proof. We follow proof (1) of theorem 1. Let ss be defined as above and

let ¢ := | X : VAL. tt[ss[x]] and p := ss[c] . (End of proof.)

However, we are interested in a construction manipulating program texts
rather than their codes. Reading Txt for Nat , and shifting whereever
possible from Txt to Txt , we make the following transcription of proof (1)

of Theorem 1,

t : Nat -+ Nat > tt of type VAL - any type tp
= i == = fn "
¢p ¢t(p) and type of p is Nat fp _—tt[fp] fzd typ%\fp is tp,
= > —
¢S(x) ¢¢x(x) SS[XX] XXEXX],
¢C(X) = t(s(x)) == cclxx] = ttlsslxx1] ,

P := s(c) => fp := decode(ss[cc]) .

10.

Rather surprisingly, this gives a proof which seems far more understandable
than the original proof, and, needless to say, a simpler construction than
in the proof of theorem 2.

Theorem 3. For any tt : Txt of type VAL - any type tp , there exists

a program text fp : Txt of type tp which is semantically equivalent to
tt[fpl , i.e. fp = ttlfpl .

Proof. Let the text £fp consist of an application, where the operand is
the code of the operator, and the operator first reproduces the code of the

whole (by means of ss) and then subjects it to tt , yielding tt[fgj . So let

ss[xx] = xx[xx] , e.g. ss := | X : VAL. ap[X,cd[x]]
cclxx] = ttl[ss[xx]] , e.g. cc := L X : VAL. tt[ss[x1]
fp := decode (ss[ccl) = cclecl

Indeed, fp = cclcc] = tt[sslccl] = ttlcclcel]l = tt[£pl . (End of proof.)

Remark. Suppose we adapt theorem 1 and its proof (2) as follows. Replace

t by t' satisfying t'(x) = ¢ . and consequently sl1 by sl10

t(x)
satisfying ¢ = ¢_(y) . Note that these equalities are "type incorrect"
s10(x,y) X
in classical Recursive Function Theory, because ¢ always denotes

a function and not a functional (t'), NOX a plain value). In our

(¢510(x,y)
language however, we did not exclude those data types. Performing now the
analogous transcription as above yields exactly the same proof!
Indeed, sl0 is represented by

ssl0 := L X,Y : VAL. aplX,caly]]l ,

for ssl10[xx,y] = xx[y] . (End of remark.)

One final and important remark is in order; it might be called the key
to the understanding of the construction. The text of cc 1is completely
irrelevant; it is only required that by invocation of cc first the code
of fp = cclee] , whatever way this application actually is written, is
computed and then the result is subject to tt . Hence, for a translation
of the construction into a concrete language like Algol 68, we may represent
some brackets by BEGIN, END and others by [,] , and we may declare some
functions explicitly and leave the routine texts of the others still at
operator positions, and we may write some applications in one way and others
in another way. That is, we need not translate the programs from the abstract
language in a uniform way into the concrete language. The appearance of ss
in the definition of fp guarantees however. that the way the application

cclee] is written corresponds to the code computed by cc . Also, if an

11.

operator =* is available for function composition, then cc might read

tt * ss instead of | X : VAL. tt[ss[X]] . And clearly, having particular
definitions of ss and ap and cd available, we may apply the body
replacement rule (which affects the syntax but not the semantics) and replace
texts by semantically equivalent ones as many times as we like in order to

get a simple text for cc . This is particularly useful if some of cd, ss

or tt do not easily translate into the concrete programming language,

but their body with suitable substitutions do.

12.

4. Applications

4.1, A self-reproducing Algol 60 program

Knowing that by construction we will find some program fp satisfying

fp = tt[fB] , it seems obvious to choose

vVal := the set of string denotations ,
VAL := STRING.,

XX := the string denotation of xx , and
tt := WRITE

Remembering notational convention 4 of section 3, we find for ap

aplxx,yy]l = BEGIN PROC P xx ; PL yy J END
where it is assumed that =~ is a string concatenation operator. So for ss

we find, in pseudo Algol,

ss := L X : STRING. BEGIN PROC P'X; P[cd[X]"] END .
Applying the body replacement rule for the occurrence of ss[X] in cc ,

we find the following theorem. Let

cc [x]; STRING X; WRITE[BEGIN PROC P 'Xx"; P[cdl[x17] END] -

BEGIN PROC P cc ; P [ccl EnD ,

fp :
then fp = WRITE[fp]
It will cause no problem to eliminate the concatenation operator:
WRITE[x y] = WRITE[x,y] = WRITE[x]; WRITE[y] . But how should we refine
cd[X] to legal Algol 60? Recall that cd[xx] = xx ; so quotes have to be
replaced by their denotation (double quotes) -- and in general each special
symbol has to be replaced by its denotation, but we will not pursue the
general case —-- and the whole has to be embraced by another pair of quotes.
Well then, replace in the definition of fp the occurrence of cc by
(EET,..,EE;) : Txt , where ccl,..,ccn is the sequence of successive maximal

quote free parts of cc . It is now easy to express ccl,..,ccn , for this

equals ‘'ccl,..,'ccn' = q'cel’qeq” .. gqeq'cen’q , provided q = ® = ¢ and

gceq = ¥, ' (recall that left and right quote are supposed to be equal;
if not, the construction becomes slightly more complicated). Thus splitting

cc , and simultaneously also STRING variable,/ C , yields

cc [Cc1,..,Cn]; STRING C1,..,Cn;

WRITE[BEGIN PROC P, Cl1, q,..,49, Cn, ;i P[,

q, Cl, ged,..,q9¢q, Cn, q,] END]
BEGIN PROC P cc ; P[ccl,..,ccn] END

fp
In order that n , the number of quote free parts of cc , is well defined

(and less than infinity), it is required that both q and gcgqg are

13.

quote free! Two solutions suggest themselves: either

1. g and gcqg are formal parameter identifiers and " and ?, ¢ are
passed as actual parameter (this yields almost literally the program of
section 2), or

2. within the body of cc the procedure declarations
PROC Q; WRITE[']l; PROC QCQ; WRITE[?, ¢];
are inserted, and each occurrence of g 1is replaced by 1; 9; WRITEL

and each occurrence of gcq by 1; QCQ; WRITE[.

Remark. The above trickof splitting cc can be described in abstract
terms as well. Indeed, let the comma be the separator of sequences and take
;; := the sequence of string denotations of the successive maximal

quote free parts of xx ,

Val := sequences of quote free string denotations,

VAL := sequences of STRING expressions.
So, VAL variable X translatesto STRING variable sequence X1,..,Xn .
The functions cd, ap, ss and tt can not yet be formulated in legal
Algol 60, but their result for the particular applications in which they
occur in cc can. So we apply the technique described in the last lines of
section 3.

"ed[X1,..,Xn]" := (ee, X1, cm,..,xm, Xn, ee)

assuming that both ee and cm are quote free, and ee = empty string

denotation , and c¢m = , . So indeed

("cd[X1,..,Xn]" where X = xx) = XX

Further

“ss[X1,..,Xn]" := BEGIN PROC P + (Xl,..,Xn) + ; P[+ "cdlx1,..,xn]" +] END
assuming + : (Txt of type VAL)~™ (I'xt of type VAL), defined by

(xx1,..,%xxn) + (yyl,..,yym) = (xx1,..,xxn"yyl,..,yym)

so that xx + ;; = xx yy , hence ("ss[X1,..,Xnl]" where X = Xx) =

BEGIN PROC P xx ; P[L X] END , as required.
Now define
"tt[¥l,..,¥n]" := BEGIN PROC Q: WwRITE[*]; PROC C; WRITE[, J;
WRITE[Y1]): Qi ... ; Qi WRITE[Yn]

<put WRITE[cml] replaced by C>

END
so that ("tt[Yl,..,¥n]" where Y = yy) = WRITE["string denotation of yy"l.
Hence,with
cc := [X0,..,Xn]; STRING XO,..,Xn;
"tt[Y0,..,¥n]" where Y = "ss[X0,..,Xn]"

fn := BRGTN PROC P e : Pl cc 1 END .

14.

we only need to eliminate four occurrences of ~ from the WRITE commands

in order to obtain a legal Algol 60 self-reproducing program. (End of xemark.)

4.2. A formulation of theorem 3 in HET

The Heel Eenvoudige Taal (Very Simple Language (but Highly Encouraging
Tricks)) HET might be called an "imperative version of the pure applicative
lambda calculus". In order to be self-contained we provide the following

brief description; more information can be found in [Meertens 1974].

The evaluation of a program text is from left to right, and each
elementary expression, henceforth called "object" (viz. a "word" of letters,
a "special symbol”, or a possibly empty "list" of objects)is interpreted
as a function. There is anvtnTtTEII§—Eﬁ§E9 anonymous. stack, on (the uppermost
part of) which each function finds its arguments and leaves its results.
Besides (there is a memory in which) any value can be (re)associated as
"the value of" any other value; it will appear that only and all objects
can come forward as value.
Each word and list is a O-ary function, yielding itself as result
{on the top of the stack}.
Here follow the special symbols and their meaning:
- ; 1is the l-ary function with no result {it throws away the top of the stack
and has no effect on the memory},
- ¥ is a 2-ary function; it reassociates its 2nd argument as the value of its
l1st (= top most) argument, yielding the value assigned,
- 4 1is a l-ary function, it yields the value of its argument,
- + 1is a 2-ary function; it yields the list obtained from its 2nd argument,
which must be a list, by inserting its lst (= top most) argument as
a new, first list element;
- / 1is a l-ary function, such that + / is semantically equivalent to

(the identical stack transformation).

- ! is a (l1+n)-ary function, for varying n. It has the effect
of the evaluation, as a subprogram,of its lst argument, stripped of its
outermost parentheses if it is a list; the subprogram evaluation may

take some n more arguments and leave some or none results.

Our abstract programming language translates easily to HET. Let 2z be
an identifier, xx and yy texts, and let the prime denote the translation

into HET. We find

15.

(xx[yyD)' := yy' xx' ,
(L_zz:VAL. xx)' := 2z ¥+ ; xx' , and
zz' := zz +* for any applied occurrence of zz

From now onwards we write only HET texts.

For a simple formulation of Theorem 3 we obviously try to code program
texts by enclosing them within brackets:
Val := the lists ,

xx := [xx]

With this convention c¢d and ap should satisfy

xx cd = xx = [xx] , and

vy xx ap = yy xx = [yy xx] .
So we may define
cd ==X ¥; [1x 4+ +
but a simple definition if ap is problematic; for instance
ap := X + ; Y4 ; X+ Y+ “strip of its brackets and + it"
However we can easily express the required result of the particular application

in which ap appears in ss, for in general

vy cd xx ap = ;; XX ap = VY xx = [yy xx] = xx yy +
So, in the definition

ss := (L X:vAL. ap[X,cd[Xx1D)' Z X ¥+ ; X t cd X t ap
we replace X +cdX +ap by X+ X 4+ + .

This definition is also suggested by the original requirement

—

XX ss = X% xx = [xx xx] = [xx] xx + = xx xx + .

We thus find the following theorem. Let

ss : =X ¥+ ; X+ X 4+ + or shorter X+ X 4+ +
cc :=X ¥+ ; Xt ss tt or shorter ss tt
fp := decode (cc ss) = cc cc
then fp = fp tt . Fully written out fp Z [X + X + + tt 1 X + X + tt .

Taking tt empty we find the self-reproducing HET program f£fp = EB

[Meertens 1974] sets out to find some list p satisfying p. = p.
Of course, we find the solution p := EB as EE L = fp = EE . Our list EB
is shorter than the list found by Meertens, but more remarkably, in our
program fp there is no occurrence of the symbol ! . We have been
seriously mislead by the occurrences of ! in Meertens solution. For it

happens that ! equals the universal function wuu , because Yy xx =y xx

l6.

and even xx ! = xx , and we thought that

either ¢;; had been transcripted systematdcally in XX uu = XX !

or he had chosen a different coding, viz. something satisfying

¥y xx = [yy xx ‘1 .
Neither of these assumptions enabled us to reinvent his solution. In

retrospect the occurrences of | may be blamed on a less simple way to

write the main application of fp , viz. cc cc ! instead of cc cc .
Indeed
ss ;=X + ; [V X4+ +Xx 4+ +

satisfies XX ss = Xx xx- , and with

cc := ss tt ,
fp := decode (cc ss) = cc cc ! s
we find
fp S [X + ; [!1X4+X++tellx+ i [1x4++x++te]l!=7Fpte .

4.3. A formulation of theorem 3 in the lambda calculus

Let us take Txt as the usual lambda calculus expressions. We consider
each expression fully bracketed, but will omit some brackets for readability.
The meaning, semantics, of an expression xx 1is defined to be the set of
all expressions being equivalent to xx on account of the following
equivalence relation. The reiation is written as = and is the reflexive
and transitive closure of the well-known conversion rules, viz.

a: L xx. ee = L yy. replace(xx,ee,yy)

B: [L_xx. eel] aa = replace (xx,ee,aa)

n: L xx. ee[xx] = ee

for any identifiers xx and yy and expressions ee and aa .
Replace(xx,ee,aa) denotes the expression obtained from ee by replacing

each free occurrence of identifier xx by the expression, possibly identifier,
aa ; it is required that for any free identifier yy of aa , the free
occurrences of xx do not occur in subexpressions of ee which are abstractions

with respect to yy (i.e. fall in the scope of some L_yy).

Naturally we take as code of xx some representative of its equivalence
class; the simplest choice is xx itself. So

val := Txt ,

XX = XX .
We thus find the following theorem. Let

ss := L X. X[x]

17,

so that indeed ss[xx] = xx[xx] ,

L x. ttlss[x1] or shorter L Xx. ttlx[x1] ,

cC
decode (ss[cc])

[L x. ttlx[x1J]1 [L x. ttlx[x]11]
then fp = ttlfpl

fp

Surprisingly, or not?, we find that the above construction of fp coincides
with the construction via the paradoxical combinator

yy = L 7. [L x. T[x[x11] [L x. T[x[x]1]
Indeed, fp = "B-rule applied to yyl[tt]"

Warning. One should not try to eliminate (by means of rule B) all

abstractions at operator positions in yy[tt] . (End of warning.)

Remark. The above result does not prove that in any model of the lambda
calculus yy yieldsthe minimal fixed point. And assuming that yy does
yield the minimal fixed point -- which is true, see [Scott 1976] --, we may
not conclude that the construction given in the proof of theorem 3, gives
the minimal fixed point as well -- which indeed is not true, see [Rogers 1967]

p. 19 --.

18.

4.4. A formulation of theorem 3 in LISP

Presumably each LISP programmer has taken the trouble once in his life
to construct a self-reproducing program. We consider it worthwhile to give
the formulation of theorem 3 in LISP, thus obtaining self-reproducing
programs and the like without any trouble.

It will appear that we only need a few atomic symbols with a fixed
meaning, viz. CONS, LAMBDA, NIL and QUOTE, abbreviated to C , L, N and Q
respectively. Thus the construction holds even for pure LISP, as defined in

section 1 of [McCarthy 1962].

We define a LISP program to be an S-expression xxX , the meaning of
which is given by eval(xx, N) . (Recall that the formal programming
language is written with capitals and square brackets only; parentheses
occur in the meta-language.) Clearly, the sole objects manipulatable by
LISP functions are S-expressions and expressions for S-expressions are
S—expressions as well.

Thus we find

VAL := the set of S-expressions ,

Val := the set of denotations of VAL values = quoted S-expressions.
It seems obvious to try the simplest possible coding (note that by
definition xx should belong to Val):

;; := the denotation of the S-expression xx = [0 xx].

Now cd and ap should satisfy

[ed xx] = xx = [Q xxJ ,

[ap xx yyl= [xx yy] .
so we may define

cd := [L [x] [c @ [c x N]11 ,

ap := [L [x v] [c x [cyNII] .

We thus have found a definition for ss

ss := [L [x] [ap X [ed x]1]] .

By the body replacement rule this may be simplified to

ss := [L [x] [c x [c [c @ [c x n11 N]1]

which we could have found more directly from the original requirement

[ss xx] = [xx xx] = [xx [Q xx1]
We thus find the following theorem. Let
cc := [L [XJ[tt [ss X11] ., or simplified
[L [x1Ctt [c x [c [c @ [c x N11 NJJ]] , and
decode ([ss ccl) = [cc [Q ec]] ,
Lt [Q £pl]

ccC

fp
Then fp

19.

[L[x] X1 (and simplifying cc) we find a self-reproducing
[Q fpl

Taking tt

program fp

We might adopt another notion of LISP program and require a program
to be a pair fn aa where fn is an S-expression and aa 1is a list of
S-expressions, and the meaning is given by evalquote(fn, aa) . Actually
this is the form in which programs have to be supplied to the[McCarthy 1962]
LISP interpreter. Now the denotation of an S-expression xx as an argument
in the list aa equals xx and not [Q xx] . Thus

Val := the set of S-expressions .
The theorem will read fp = tt [fB] where fp 1is a pair. We choose to
supply tt with a single argument, and thus define

XX = i[xx] for pairs xx

XX for S-expressions xx

The requirement for ss now reads

ss [xx] = xx [xx] = [xx [xx]] for S—-expressions Xx .
So we may define

ss := [L[x] [c x [c [c x N] n11T ,
and find the following theorem. Let
[L[x] [tt [c x [c [c x NI N]]1]

decode (sslcel) = cc [cc]

ccC

-

fp
then fp = tt [[£fp]]

[Q@ N1; in full LISP we may even

Quite remarkably, QUOTE occurs only in N
take N = N ; so that QUOTE does not occur at all in the self-reproducing

program fp

20.

References

Van Emde Boas, P.: Abstract resource bounded classes. Thesis, Mathematical
Centre, Amsterdam (1974).

Fokkinga, M.M.: A Self-Reproducing Algol 60 Program. Algol Bulletin 35
(1973) 24-62.

Kleene, S.C.: Introduction to Meta-Mathematics. North-Holland, Amsterdam, 1952.

McCarthy, J. et al: LISP 1.5. Programmers Manual. The M.I.T. Press, Cambridge,
Massachusetts (1962).

Meertens, L.: De heel eenvoudige taal HET. Mathematical Centre Syllabus 25
(1974), Mathematical Centre, Amsterdam.

Rogers, H.R.: Theory of recursive functions and effective computability,
McGraw-Hill (1967).

Scott, D.: Data types as lattices. SIAM J. Comp. 5 (1976), 3, 522-587.

