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Abstract

We give a very simple algorithm which evaluates a number written in the
Fibonacci system from left to right according to Horner's scheme. Both
an a priori mathematical problem analysis and a direct algorithmic
construction are given. Finally we investigate the generalization for

arbitrary recurrence relations.
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1. The Eroblem statement

The Fibonacci sequence 1S defined by

(0) FO = aeer F1 = ..., and for 3 2 0 Fj+2 = Fj + Fj+1

Let & possibly empty sequence a, a, =+ @ (n 2z 0) be given.

a8 %1 "2 n-1
It is requested to determine the value
: = * .o
R \ ag F__1 + + an—l*FO
with the constraint that the sequence @& may only be scanned,
from left to right, once- Hence the value of 1 might be determined im-

plicitly and need not pe known pefore a1 has been scanned.

2. An a Eriori mathematical analxsis

We realize that half-way the computational proces we will have computed
the value

(1) wj = aO*Fj_1 + .. *t aj—l*FO

for some j: 0..n - indeed, when 3 =10 the value wj equals the requested
value W i further, no use is made of the value of n and the sequence @
has been scanned from 1eft to right. We try to set up @ recurrence relation
for W,

W = (from(l):) a *xF, + .- + a.*F
3 30

341 0

(aO*Fj + .. t aj_1

"

*Fl) + aj*FO

vj + a.*F0

provided‘we define the entity vj P involving the sequence scanned SO far,

as follows:

.= B * .
(2) vJ aO*FJ aj_1 F1
Now we need to express

recurxr t too:
vj+1 rently

vj+1 = (from(2):) aO*Fj+1 + .. T aj*F1
= (aO*Fj+1 y .ot aj_l*Fz) + aj*F1
= (f£rom (0):) (aO*(Fj—1+Fj) + .. F aj_l*(FO+F1)) + aj*F1
= (aO*Fj_1 + .. t aj_l*Fo) + (aO*Fj + .. * aj—i*Fl) + aj*F1
= (from (2,3)3) wj + vj + aj*F1 .

Fortunately,,we are through'
The program now is @ simple repetition. The invariant relation reads
p: 0<3isnm and W = g and v = vj .
The program reads
i, W, V T o, 0, Oi

gg_jfn > 4, W VT j+1, V+aj*FO' w+v+aj*F1 od -



3. A direct algorithmic construction

We try to establish relation R by means of a repetition. To this end we
derive the invariant relation from R by ‘"replacing a constant by a
variable" (the standard approach:). We choose to replace (alll) occurrences
of n by a variable j
PO: w = aO*Fj_1 + ..+ aj_l*F0 and 0sjsn .
(The second term has been introduced to restrict the range of j ). The
program should then read

j, w := 0, O; {ro}

do j#n + j, w := j+1, "new w" od {R} .

In order to know how to refine "new w" we compute

wp("i,w := j+1, "new w"", PO) =
= “new w' = aO*Fj+1—1 + .. + aj+1_1*F0 and 0<j+1<n
= " (LR 3 <
new w (aO*Fj + ..+ aj—l*Fl) + aj*FO and 0<j+1<n

This is true, on account of PO , provided we refine

"new w" : v + a_.*F

j 0
and we establish before the assignment the relation
Pl: = * + .. + . *
1 v ag Fj aj_1 F1

However, instead of establishing Pl inside the repetition from scratch,
we may as well take relation P1 outside the repetition:

j, w, v := 0, 0, 0; {PO and p1}
0’ “"reestablish P1" od
For convenience -- as appeared in earlier drafts of this paper --— we will

do j#n +» . W := j+1, v+aj*F

reestablish P1 simultaneously with the assignment to j and w :
j, w, v := 0, 0, O;
do j#n » j, w, v = 3+, V+aj*FO , "new v"' od .

in order to know how to refine "new v"" , P1) =

wp("j,w,v = J+1, v+aj*F0, "new v", P1) =
= " u = *
new v a0 Fj+1 + ..t aj+1_1*F1
= "new v" = (ao*(Fj_1+Fj) + .. + aj—l*(F0+F1)) + aj*F1
=" " o= * .. . .o R F + &F
new v (aO Fj_1 + + aj—l*FO) + (aO*F] + + aj_l* 1) aj* 1

new v" = w + v + aj*F1 .
The transition to the last line is valid on account of PO and Pl imme-
diately before the assignment. Hence we may refine
n " - *
new v : w + v + aj F1
Herewith the program has been finished:

jl W, V = O' 0' 0;

gg_j#n + j, W, V T j+1, v+aj*Fo, w+v+aj*F1 od .



Remark. The direct algorithmic construction shows exactly the same reasoning

as the mathematical analysis. (End of remark.)

3. Generalization

Let k21 and let £ be a function such that

(0) for some constants co,..,c

k-1
- = * + ..

f(xo, 'xk—l) Co*X, + Ck—l*xk—l
Let S Dbe a recurrent sequence, defined by means of £
(1) S0 ..,Sk_1 are given,

Sj+k = f(sj""3+k—1) for '3 20
We give a simple and efficient algorithm to determine
R: w = ao*Sn_1 + ..+ an_l*S0
for arbitrary sequence ag -- an_1 (nz0), which scans the sequence from

left to right (and doesn't use the value of n before a has been

n-1
scanned) . We also show that (0) is a complete characterization for all

functions £ for which the algorithm is correct-

Notation. "Si: m..n. ti" means: the sum of all terms ti 1in which i

ranges over m..n .

Define k sequences w.,..,W as follows.

0]
(2) For each 3j , 0<j<n,

k-1

1

w. . = 8i: 0..3-1. a, xS,
0,3 - ) i J-

wllj

1-i

= 8i: 0..3-1. ai*sj—1—1+1 '

wk—l,j = 8i: 0..j-1. ai*sj—l—i+k—2 ‘

wk—l,j = 8i: 0..j-1. ai*sj—l—i+k—1

The required value w equals It appears that w

Yo,n 0,5+17 """ "k-1,5+1

can be expressed recurrently in their predecessors w0 j,..,wk 1,5
’ —dl

as follows.

(3) g, 44p = 33%Sg T Wy 5

Yi,9+1 T 3% 2,5 '

= * +
a*Sp 0 F e,y

= *S + £ .
Ye-1,9+1 © 257%k-1 (Wo, 577 Yy, 5

The first k-1 equalities follow directly from (2); the last equality

Yk-2,9+1



exploits (0) and (1) as well.

Thanks to the recurrence relation a single repetition suffices. The
invariant relation reads
0<jsn and = . .o
3j wg wO'] and and w
The program reads

k-1~ k-1,

3, Wor eeer wk_1 si= 0, 0, .., O;
do j#n ~
Joowge eep oW g oi= j+1, aj*so+w1, . aj*sk_1+f(w0,..,wk_1)
od .
Applications.

The unary, binary and decimal system are instances of the general case, viz.

a. S

0 1 and f(xo) = x0 : unary system,

b. SO =1, and f(xo) = 2*x0 : binary system,
c. sO = 1, and f(xo) = 10*xO : decimal system.
However the above algorithm allows the "digits" aj to be of

unbounded value. Note also that case a 1is the standard summation

+ .. + a
2o

Another example is the Fibonacci sequence

n-1

o™ *1

For all these cases the algorithm is the most efficient one (measured in

d. SO = 0, S1 = 1 and f(xo,xl) = X

the number of additions and multiplications): it is an implementation of

Horner's scheme!

Completeness of requirement (O0).

In the last line ©f the proof of the recurrence relation (3), it appears that

a sufficient and necessary condition for £ reads

0,3 " *k-1,5 "

f((s..a.*x_ ) .. S.. a.*x )
((55-24 0,3°" °°' (-j i Tk-1,3

The requirement (0) is equivalent with (4), and so it is a complete characteri-

(4) 8j. aj*f(x

zation of all f for which the algorithm is correct. The implication

(4) == (0) is easy; for the converse (0) = (4) we argue as follows,
For arbitrary Xgr eor ¥y define

(5) aj = xj for 0<j<k-1 ,

6 , =41 if i =3

(6) 5.4 ]

0 if i # 3 for 0sj<k-1 .
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Then we find

f(XO""xk-—l) =
= (from (5,6):) £((8j: 0..k-1. aj*xo,j)
= (from (4):) Sj: 0..k-1. f(aj*xo,j'

(from (5,6):) xo*f(l,O,..,O) + .. + X
so we may choose c0 = £(1,0..,0)¢.., ck-l
holds as well.

Nete, odded dater

cvb(.ﬁun b ALcitongwte aetaion &y A W,
]

[

o~

ce v (83 0Lk-ll agex )

%
' a:] xk"l,j)

_1*f(0..,0,1)
£(0..,0,1) and we see that (0)

'Jo&dk E\Aftfg,{;?'lwf PDLIA_(LCL f\,-m-«j allewheu to ke

)
‘*{)49_ = (ﬁoifi*, + -+ _ot)._l*?;_) + (a\)",;-, N qJH" k)

= (6t + 4 aj Ah )+ (a+F —ayxF) +
(avﬂ—'\:).-l - o + aJ_’l X'FO) T (QJX-FI + ‘{J.H*-FD)

= W o+ W +(dJ-*F+aJ+‘XFo-‘S"‘Fo)

) 3§+ 4

Wi o= 6, = asF,

¢ % WO, WA 1= 0, Gy, 0, GoxTy
do J:,:v\ = ), @,wo, u‘m«_:JH) a, o1,

axd LA = "JJ'*“

ced :6’({} @u/d_ 04

wo+ wi + a*f + ‘%j*FD —a\g;*—‘:o _19_4

£ v

- .



