Rive

Evaluation of numbers written in the Fibonacci system

Maarten M. Fokkinga
1979-07-19

Abstract

We give a very simple algorithm which evaluates a number written in the
Fibonacci system from left to right according to Horner's scheme. Both
an a priori mathematical problem analysis and a direct algorithmic
construction are given. Finally we investigate the generalization for

arbitrary recurrence relations.

Acknowledgement

The problem has been suggested by Theo van der Genugten.



1. The Eroblem statement

The Fibonacci sequence 1S defined by

(0) FO = aeer F1 = ..., and for 3 2 0 Fj+2 = Fj + Fj+1

Let & possibly empty sequence a, a, =+ @ (n 2z 0) be given.

a8 %1 "2 n-1
It is requested to determine the value
: = * .o
R \ ag F__1 + + an—l*FO
with the constraint that the sequence @& may only be scanned,
from left to right, once- Hence the value of 1 might be determined im-

plicitly and need not pe known pefore a1 has been scanned.

2. An a Eriori mathematical analxsis

We realize that half-way the computational proces we will have computed
the value

(1) wj = aO*Fj_1 + .. *t aj—l*FO

for some j: 0..n - indeed, when 3 =10 the value wj equals the requested
value W i further, no use is made of the value of n and the sequence @
has been scanned from 1eft to right. We try to set up @ recurrence relation
for W,

W = (from(l):) a *xF, + .- + a.*F
3 30

341 0

(aO*Fj + .. t aj_1

"

*Fl) + aj*FO

vj + a.*F0

provided‘we define the entity vj P involving the sequence scanned SO far,

as follows:

.= B * .
(2) vJ aO*FJ aj_1 F1
Now we need to express

recurxr t too:
vj+1 rently

vj+1 = (from(2):) aO*Fj+1 + .. T aj*F1
= (aO*Fj+1 y .ot aj_l*Fz) + aj*F1
= (f£rom (0):) (aO*(Fj—1+Fj) + .. F aj_l*(FO+F1)) + aj*F1
= (aO*Fj_1 + .. t aj_l*Fo) + (aO*Fj + .. * aj—i*Fl) + aj*F1
= (from (2,3)3) wj + vj + aj*F1 .

Fortunately,,we are through'
The program now is @ simple repetition. The invariant relation reads
p: 0<3isnm and W = g and v = vj .
The program reads
i, W, V T o, 0, Oi

gg_jfn > 4, W VT j+1, V+aj*FO' w+v+aj*F1 od -



3. A direct algorithmic construction

We try to establish relation R by means of a repetition. To this end we
derive the invariant relation from R by ‘"replacing a constant by a
variable" (the standard approach:). We choose to replace (alll) occurrences
of n by a variable j
PO: w = aO*Fj_1 + ..+ aj_l*F0 and 0sjsn .
(The second term has been introduced to restrict the range of j ). The
program should then read

j, w := 0, O; {ro}

do j#n + j, w := j+1, "new w" od {R} .

In order to know how to refine "new w" we compute

wp("i,w := j+1, "new w"", PO) =
= “new w' = aO*Fj+1—1 + .. + aj+1_1*F0 and 0<j+1<n
= " (LR 3 <
new w (aO*Fj + ..+ aj—l*Fl) + aj*FO and 0<j+1<n

This is true, on account of PO , provided we refine

"new w" : v + a_.*F

j 0
and we establish before the assignment the relation
Pl: = * + .. + . *
1 v ag Fj aj_1 F1

However, instead of establishing Pl inside the repetition from scratch,
we may as well take relation P1 outside the repetition:

j, w, v := 0, 0, 0; {PO and p1}
0’ “"reestablish P1" od
For convenience -- as appeared in earlier drafts of this paper --— we will

do j#n +» . W := j+1, v+aj*F

reestablish P1 simultaneously with the assignment to j and w :
j, w, v := 0, 0, O;
do j#n » j, w, v = 3+, V+aj*FO , "new v"' od .

in order to know how to refine "new v"" , P1) =

wp("j,w,v = J+1, v+aj*F0, "new v", P1) =
= " u = *
new v a0 Fj+1 + ..t aj+1_1*F1
= "new v" = (ao*(Fj_1+Fj) + .. + aj—l*(F0+F1)) + aj*F1
=" " o= * .. . .o R F + &F
new v (aO Fj_1 + + aj—l*FO) + (aO*F] + + aj_l* 1) aj* 1

new v" = w + v + aj*F1 .
The transition to the last line is valid on account of PO and Pl imme-
diately before the assignment. Hence we may refine
n " - *
new v : w + v + aj F1
Herewith the program has been finished:

jl W, V = O' 0' 0;

gg_j#n + j, W, V T j+1, v+aj*Fo, w+v+aj*F1 od .



Remark. The direct algorithmic construction shows exactly the same reasoning

as the mathematical analysis. (End of remark.)

3. Generalization

Let k21 and let £ be a function such that

(0) for some constants co,..,c

k-1
- = * + ..

f(xo, 'xk—l) Co*X, + Ck—l*xk—l
Let S Dbe a recurrent sequence, defined by means of £
(1) S0 ..,Sk_1 are given,

Sj+k = f(sj""3+k—1) for '3 20
We give a simple and efficient algorithm to determine
R: w = ao*Sn_1 + ..+ an_l*S0
for arbitrary sequence ag -- an_1 (nz0), which scans the sequence from

left to right (and doesn't use the value of n before a has been

n-1
scanned) . We also show that (0) is a complete characterization for all

functions £ for which the algorithm is correct-

Notation. "Si: m..n. ti" means: the sum of all terms ti 1in which i

ranges over m..n .

Define k sequences w.,..,W as follows.

0]
(2) For each 3j , 0<j<n,

k-1

1

w. . = 8i: 0..3-1. a, xS,
0,3 - ) i J-

wllj

1-i

= 8i: 0..3-1. ai*sj—1—1+1 '

wk—l,j = 8i: 0..j-1. ai*sj—l—i+k—2 ‘

wk—l,j = 8i: 0..j-1. ai*sj—l—i+k—1

The required value w equals It appears that w

Yo,n 0,5+17 """ "k-1,5+1

can be expressed recurrently in their predecessors w0 j,..,wk 1,5
’ —dl

as follows.

(3) g, 44p = 33%Sg T Wy 5

Yi,9+1 T 3% 2,5 '

= * +
a*Sp 0 F e,y

= *S + £ .
Ye-1,9+1 © 257%k-1 (Wo, 577 Yy, 5

The first k-1 equalities follow directly from (2); the last equality

Yk-2,9+1



exploits (0) and (1) as well.

Thanks to the recurrence relation a single repetition suffices. The
invariant relation reads
0<jsn and = . .o
3j wg wO'] and and w
The program reads

k-1~ k-1,

3, Wor eeer wk_1 si= 0, 0, .., O;
do j#n ~
Joowge eep oW g oi= j+1, aj*so+w1, . aj*sk_1+f(w0,..,wk_1)
od .
Applications.

The unary, binary and decimal system are instances of the general case, viz.

a. S

0 1 and f(xo) = x0 : unary system,

b. SO =1, and f(xo) = 2*x0 : binary system,
c. sO = 1, and f(xo) = 10*xO : decimal system.
However the above algorithm allows the "digits" aj to be of

unbounded value. Note also that case a 1is the standard summation

+ .. + a
2o

Another example is the Fibonacci sequence

n-1

o™ *1

For all these cases the algorithm is the most efficient one (measured in

d. SO = 0, S1 = 1 and f(xo,xl) = X

the number of additions and multiplications): it is an implementation of

Horner's scheme!

Completeness of requirement (O0).

In the last line ©f the proof of the recurrence relation (3), it appears that

a sufficient and necessary condition for £ reads

0,3 " *k-1,5 "

f((s..a.*x_ ) .. S.. a.*x )
((55-24 0,3°" °°' (-j i Tk-1,3

The requirement (0) is equivalent with (4), and so it is a complete characteri-

(4) 8j. aj*f(x

zation of all f for which the algorithm is correct. The implication

(4) == (0) is easy; for the converse (0) = (4) we argue as follows,
For arbitrary Xgr eor ¥y define

(5) aj = xj for 0<j<k-1 ,

6 , =41 if i =3

(6) 5.4 ]

0 if i # 3 for 0sj<k-1 .



-

S ¥ WP N

g Sy ¥ 3§~ 3

PR

e L m

Then we find

f(XO""xk-—l) =
= (from (5,6):) £((8j: 0..k-1. aj*xo,j)
= (from (4):) Sj: 0..k-1. f(aj*xo,j'

(from (5,6):) xo*f(l,O,..,O) + .. + X
so we may choose c0 = £(1,0..,0)¢.., ck-l
holds as well.

Nete, odded dater

cvb(.ﬁun b ALcitongwte aetaion &y A W,
]

[

o~

ce v (83 0Lk-ll agex )

%
' a:] xk"l,j)

_1*f(0..,0,1)
£(0..,0,1) and we see that (0)

'Jo&dk E\Aftfg,{;?'lwf PDLIA_(LCL f\,-m-«j allewheu to ke

)
‘*{)49_ = (ﬁoifi*, + -+ _ot)._l*?;_) + (a\)",;-, N qJH" k)

= (6t + 4 aj Ah )+ (a+F —ayxF) +
(avﬂ—'\:).-l - o + aJ_’l X'FO) T (QJX-FI + ‘{J.H*-FD)

= W o+ W +(dJ-*F+aJ+‘XFo-‘S"‘Fo)

) 3§+ 4

Wi o= 6, = asF,

¢ % WO, WA 1= 0, Gy, 0, GoxTy
do J:,:v\ = ), @,wo, u‘m«_:JH) a, o1,

axd LA = "JJ'*“

ced :6’({} @u/d_ 04

wo+ wi + a*f + ‘%j*FD —a\g;*—‘:o _19_4

£ v

- .



