Evaluation of numbers written in the Fibonacci system

Maarten M. Fokkinga 1979-07-19

Abstract

We give a very simple algorithm which evaluates a number written in the Fibonacci system from left to right according to Horner's scheme. Both an a priori mathematical problem analysis and a direct algorithmic construction are given. Finally we investigate the generalization for arbitrary recurrence relations.

Acknowledgement

The problem has been suggested by Theo van der Genugten.

1. The problem statement

The Fibonacci sequence is defined by

The Fibonacci sequence is defined by

(0)
$$F_0 = \dots, F_1 = \dots$$
, and for $j \ge 0$ $F_{j+2} = F_j + F_{j+1}$.

(n ≥ 0) by

Let a possibly empty sequence $a_0 a_1 a_2 \cdots a_{n-1}$ $(n \ge 0)$ be given.

It is requested to determine the value

It is requested
R:
$$W = a_0^{*F} n - 1$$
 + ... + $a_{n-1}^{*F} 0$

with the constraint that the sequence a may only be scanned,

from left to right, once. Hence the value of n might be determined implicitly and need not be known before a_{n-1} has been scanned.

2. An a priori mathematical analysis

We realize that half-way the computational proces we will have computed the value

(1)
$$w_j = a_0^{*F} j - 1 + \cdots + a_{j-1}^{*F} 0$$

for some j: 0..n . Indeed, when j = n the value w_j equals the requested (1) $w_j = a_0^{*F}_{j-1} + \dots + a_{j-1}^{*F}_{0}$ value w; further, no use is made of the value of n and the sequence a has been scanned from left to right. We try to set up a recurrence relation

for
$$w_j$$
:

 $w_{j+1} = (from(1):) a_0 *F_j + ... + a_j *F_0$
 $= (a_0 *F_j + ... + a_{j-1} *F_1) + a_j *F_0$
 $= v_j + a_j *F_0$

provided we define the entity v_{j} , involving the sequence scanned so far,

as follows:
(2)
$$v_j = a_0^{*F_j} + \cdots + a_{j-1}^{*F_1}$$
 recurrent

Now we need to express v_{j+1} recurrently too:

Now we need to express
$$v_{j+1}$$
 recurrently
$$v_{j+1} = (\text{from}(2):) \ a_0^{*F}_{j+1} + \dots + a_j^{*F}_1$$

$$= (a_0^{*F}_{j+1} + \dots + a_{j-1}^{*F}_2) + a_j^{*F}_1$$

$$= (\text{from}(0):) \ (a_0^{*(F}_{j-1}^{+F}_j) + \dots + a_{j-1}^{*(F}_0^{+F}_1)) + a_j^{*F}_1$$

$$= (a_0^{*F}_{j-1} + \dots + a_{j-1}^{*F}_0) + (a_0^{*F}_j + \dots + a_{j-1}^{*F}_1) + a_j^{*F}_1$$

$$= (a_0^{*F}_{j-1} + \dots + a_{j-1}^{*F}_0) + (a_0^{*F}_j + \dots + a_{j-1}^{*F}_1) + a_j^{*F}_1$$

$$= (\text{from}(2,3):) \ w_j + v_j + a_j^{*F}_1$$

The program now is a simple repetition. The invariant relation reads Fortunately, we are through!

The program now is
$$u = w_j$$
 and $v = v_j$.

P: $0 \le j \le n$ and $w = w_j$ and $v = v_j$.

The program reads

j, w, v := 0, 0, 0;
j, w, v := 0, 0, 0;

$$j = j+1, v+a_j*F_0' w+v+a_j*F_1$$

$$j, w, v := 0, 0, 0;$$

 $do j \neq n \rightarrow j, w, v := j+1, v+a_j*F_0' w+v+a_j*F_1 od$.

3. A direct algorithmic construction

We try to establish relation R by means of a repetition. To this end we derive the invariant relation from R by "replacing a constant by a variable" (the standard approach!). We choose to replace (all!) occurrences of n by a variable j:

P0: $w = a_0 * F_{j-1} + ... + a_{j-1} * F_0 \text{ and } 0 \le j \le n$.

(The second term has been introduced to restrict the range of j). The program should then read

 $j, w := 0, 0; \{P0\}$

 \underline{do} $j\neq n \rightarrow j$, w := j+1, "new w" \underline{od} {R}.

In order to know how to refine "new w" we compute wp("j,w := j+1, "new w"", P0) =

= "new w" = $a_0 * F_{j+1-1} + ... + a_{j+1-1} * F_0 = and 0 \le j+1 \le n$

= "new w" = $(a_0 * F_j + ... + a_{j-1} * F_1) + a_j * F_0$ and $0 \le j+1 \le n$.

This is true, on account of PO, provided we refine

"new w" : $v + a_{i} * F_{0}$

and we establish before the assignment the relation

P1: $v = a_0 * F_j + ... + a_{j-1} * F_1$

However, instead of establishing P1 inside the repetition from scratch, we may as well take relation P1 outside the repetition:

j, w, v := 0, 0, 0; $\{P0 \text{ and } P1\}$

 \underline{do} $j \neq n \rightarrow j$, w := j+1, $v+a_j*F_0$; "reestablish P1" \underline{od} . For convenience -- as appeared in earlier drafts of this paper -- we will reestablish P1 simultaneously with the assignment to j and w:

j, w, v := 0, 0, 0;

 \underline{do} $j\neq n \rightarrow j$, w, v := j+1, $v+a_j*^F_0$, "new v" \underline{od} .

In order to know how to refine "new v"" , P1) =

 $wp("j,w,v := j+1, v+a_j*F_0, "new v", P1) =$

= "new v" = $a_0^{*F}_{j+1}$ + .. + $a_{j+1-1}^{*F}_{1}$

= "new v" = $(a_0 * (F_{j-1} + F_j) + ... + a_{j-1} * (F_0 + F_1)) + a_j * F_1$

= "new v" = $(a_0^{*F}_{j-1} + ... + a_{j-1}^{*F}_{0}) + (a_0^{*F}_{j} + ... + a_{j-1}^{*F}_{1}) + a_j^{*F}_{1}$

= "new v" = $w + v + a_{j}*F_{1}$.

The transition to the last line is valid on account of PO and P1 immediately before the assignment. Hence we may refine

"new v" : $w + v + a_j *F_1$.

Herewith the program has been finished:

j, w, v := 0, 0, 0;

 \underline{do} $j \neq n \rightarrow j$, w, v := j+1, $v+a_j*F_0$, $w+v+a_j*F_1 \underline{od}$.

Remark. The direct algorithmic construction shows exactly the same reasoning as the mathematical analysis. (End of remark.)

3. Generalization

Let $k \ge 1$ and let f be a function such that

(0) for some constants $c_0, ..., c_{k-1}$ $f(x_0, ..., x_{k-1}) = c_0 * x_0 + ... + c_{k-1} * x_{k-1}$.

Let S be a recurrent sequence, defined by means of f:

(1) $S_0, ..., S_{k-1}$ are given, $S_{j+k} = f(S_j, ..., S_{j+k-1})$ for $j \ge 0$.

We give a simple and efficient algorithm to determine

R: $w = a_0 * S_{n-1} + ... + a_{n-1} * S_0$

for arbitrary sequence $a_0 \ldots a_{n-1}$ $(n \ge 0)$, which scans the sequence from left to right (and doesn't use the value of n before a_{n-1} has been scanned). We also show that (0) is a complete characterization for all functions f for which the algorithm is correct.

Notation. " $\underline{S}i$: m..n. ti" means: the sum of all terms ti in which i ranges over m..n .

Define k sequences w_0, \dots, w_{k-1} as follows.

(2) For each j , $0 \le j \le n$,

$$w_{0,j} = \underline{Si} : 0..j-1. \ a_{i} * S_{j-1-i} '$$

$$w_{1,j} = \underline{Si} : 0..j-1. \ a_{i} * S_{j-1-i+1} '$$

$$\vdots$$

$$w_{k-1,j} = \underline{Si} : 0..j-1. \ a_{i} * S_{j-1-i+k-2} '$$

$$w_{k-1,j} = \underline{Si} : 0..j-1. \ a_{i} * S_{j-1-i+k-1} '$$

(3) $w_{0,j+1} = a_j * s_0 + w_{1,j}$, $w_{1,j+1} = a_j * s_1 + w_{2,j}$, \vdots \vdots $w_{k-2,j+1} = a_j * s_{k-2} + w_{k-1,j}$, $w_{k-1,j+1} = a_j * s_{k-1} + f(w_{0,j}, \dots, w_{k-1,j})$. The first k-1 equalities follow directly from (2); the last equality

exploits (0) and (1) as well.

Thanks to the recurrence relation a single repetition suffices. The invariant relation reads

 $0 \le j \le n \text{ and } w_0 = w_{0,j} \text{ and } \cdots \text{ and } w_{k-1} = w_{k-1,j}$. The program reads

$$\begin{array}{l} \text{j, } w_0, \ \dots, \ w_{k-1} := 0, \ 0, \ \dots, \ 0; \\ \\ \underline{\text{do}} \ \text{j} \neq \text{n} \rightarrow \\ \\ \text{j, } w_0, \ \dots, \ w_{k-1} := \text{j+1, a}_{\text{j}} * \text{S}_0 + \text{w}_1, \ \dots, \ \text{a}_{\text{j}} * \text{S}_{k-1} + \text{f}(\text{w}_0, \dots, \text{w}_{k-1}) \\ \\ \underline{\text{od}} \ . \end{array}$$

Applications.

The unary, binary and decimal system are instances of the general case, viz.

a.
$$S_0 = 1$$
 and $f(x_0) = x_0$: unary system,

b.
$$S_0 = 1$$
, and $f(x_0) = 2*x_0$: binary system,

c.
$$S_0 = 1$$
, and $f(x_0) = 10*x_0$: decimal system.

However the above algorithm allows the "digits" $a_{\mbox{\scriptsize j}}$ to be of

unbounded value. Note also that case a is the standard summation

$$a_0 + \dots + a_{n-1}$$

Another example is the Fibonacci sequence

d.
$$S_0 = 0$$
, $S_1 = 1$ and $f(x_0, x_1) = x_0 + x_1$.

For all these cases the algorithm is the most efficient one (measured in the number of additions and multiplications): it is an implementation of Horner's scheme!

Completeness of requirement (0).

In the last line $\circ f$ the proof of the recurrence relation (3), it appears that a sufficient and necessary condition for f reads

(4)
$$\underline{S}j. a_j * f(x_0, j, ..., x_{k-1, j}) = f((\underline{S}j. a_j * x_0, j), ..., (\underline{S}j. a_j * x_{k-1, j}))$$
.

The requirement (0) is equivalent with (4), and so it is a complete characterization of all f for which the algorithm is correct. The implication

(4) \Longrightarrow (0) is easy; for the converse (0) \Longrightarrow (4) we argue as follows.

For arbitrary x_0, \dots, x_{k-1} define

(5)
$$a_j = x_j$$
 for $0 \le j \le k-1$,

(6)
$$x_{i,j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$
 for $0 \le j \le k-1$.

Then we find

$$f(x_0, \dots, x_{k-1}) =$$

- = $(from (5,6):) f((\underline{S}j: 0..k-1. a_j*x_{0,j}), ..., (\underline{S}j: 0..k-1. a_j*x_{k-1,j}))$
- = (from (4):) Sj: 0..k-1. $f(a_j * x_0, j, ..., a_j * x_{k-1, j})$
- = $(\text{from } (5,6):) \times_0 *f(1,0,...,0) + ... + \times_{k-1} *f(0...,0,1)$

so we may choose $c_0 = f(1,0...,0),..., c_{k-1} = f(0...,0,1)$ and we see that (0) holds as well.

Note, added later Josef Engelfriet pointed my attention to the following recurrente relation for the wij:

$$\begin{aligned} \omega_{j+2} &= \left(a_0 * F_{j+1} + \cdots + a_{j-1} * F_2\right) + \left(a_j * F_3 + a_{j+1} * F_0\right) \\ &= \left(a_0 * F_j + \cdots + a_{j-1} * F_1\right) + \left(a_j * F_0 - a_j * F_0\right) + \\ \left(a_0 * F_{j-1} + \cdots + a_{j-1} * F_0\right) + \left(a_j * F_1 + a_{j+1} * F_0\right) \\ &= \omega_j + \omega_{j+1} + \left(a_j * F_1 + a_{j+1} * F_0 - a_j * F_0\right) \end{aligned}$$

with wo = 0, U1 = adfo.

So another program reads

 $j, a, wo, w_1 := 0, a_0, o, a_0 * \overline{t}_0;$

do $j \neq n \Rightarrow j, a, \omega_0, \omega_1 := j + l, aj, \omega_1, \omega_0 + \omega_1 + a \star \xi_1 + aj \star \xi_0 - aj \star \xi_0$ with invariant relation

 $\omega_0 = \omega_j$ and $\omega_1 = \omega_{j+1}$ and $\omega_j = \alpha_j$ and $0 \le j \le n$.