.

TECHNISCHE HOGESCHOOL TWENTE

MEMORANDUM NR. 249

A SIMPLER CORRECTNESS PROOF OF AN
IN-PLACE PERMUTATION ALGORITHM

MAARTEN M. FOKKINGA

MARCH 1979

Department of Applied Mathematics,
Twente University of Technology,
P.0. Box 217,

7500 AE Enschede, The Netherlands

ONDERAFDELING DER TOEGEPASTE WISKUNDE

Evrvate to A 5i\~u\otu Gorrectuess Yrovd ot

prae | place shouwld reodl:
4 | halfuoay do vz j# n-t —
L7 frow bdop e g &
2 2. A awd Acronji. it
A.8 Nt jtn-t = .-
Lask Live gHgvn e ead Aliel Ll PhE)=E
2T cee MEFFNA
and, for Me copies Wik a gey cover, aloo:
1 wwg q:= Fops do g<j —~ 9= Fq); A,
vieap (i, q); =)t
Y4 |Line 10 q:=FG); de q¢j = = Fgq oA {q- fyl
th e Neq 4, F(q, Ta, T3 ...
14 ... do wet utainw g .
i 16 u':suap(é, q).-

Contents
The program
A "stepping stone" program

The final program

References

A SIMPLER CORRECTNESS PROOF OF AN IN-PLACE PERMUTATION ALGORITHM.

BAbstract. In 1972 Duijvestijn gave a correctness proof of a particular
permutation algorithmusing an invariant relation. We present another
proof based on this relation. It uses ghost variables and

consequently can be split up into easily comprehensible parts. This
might be of interest to the reader. The verification itself is hardly
of interest: the application of the predicate transformation rules is

straightforward and involves nearly no mathematics.

The program. The program to be proved correct rearranges a variable
v: array [0 .. n-1] of T with initial value V , according to a given permutation
F of 0 .. n-1 , using only auxiliary variables which do not depend on

n or on T . Thus the program establishes
R: A i: 0 .. n-1 . v(i) =‘V(€(i)) .
ﬁ:?ﬁgg§2§jhén3 in zhe sequel the notation of (Dijkstra 76), the program reads
j := 0
46%j # n=1 >

Bk -9 r); s a8 > hat = @yrad) o

v :swap(j,qB); j := j+1
od -
We will give the correctness proof together with a construction of the
program. We want to stress again that the verfication of the invariant
relations is merely a boring formula manipulation, involving no interesting
mathematics. We present it only to contrast it with (Duijvestijn 72).

A "stepping stone" program: using a ghost variable

We try to establish R by means of a repetition with the invariant
relation (found by standard techniques)

0<j<nand Ai: 0 .. j-1. v(i) = V(F(1)) .
In order to know how the remaining elements of v need to be arranged yet,
we introduce an array variable £ , representing a permutation of
j .. n-1 , such that

Ai: 3 .. n-1. v(£(1)) = V(F(1)) .
Letting f(i) = i for i: 0 .. j-1 , we can express the complete invariant

relation as PO and P1

PO: f denotes a permutation of 0 .. n-1 , €9'-"J‘ﬁ
Pl: 0 < j<nand A i: 0 .. n-1. v(£(i)) = V(F(i)) and A i: et . £(1) = 1
The program, then, has the structure

£f :=F; j :=0 {v = V; hence PO and P1 established};

do "maintain PO and Pl, decrease n-j" od {Rr}

There are several ways to derive or invent the refinement
"maintain PO and Pl, decrease n-3j":
. . . -1 .. .o ra
n#j#Fn-1 -+ 1 aswap(],f(;))if :ngp(f (3),3); 3 :=,j+1 ;444A/7c~*%“7’“fba“ A

It Geagacl —n ST Pl : ?/ o u Ry
We will give the verification of the invariance only. ?“‘“‘('&U J

Recall the semantics of assignment and swapping.

wp(x := e, P) = P[x « e]

wpla :swap(x,y), P) = Pla « a'], where a' = a[x « aly), y < a(x)] .
In general, the array value a' = alx « el, v « e2] is defined

for any a, x, y, el, e2 with x#y or el=e2 , as follows

a'(i) = a(i) for i different from x and y
el for i = x
e?2 for i =y

Now we prove the invariance; first of PO and then of Pl.
Because f is subject to swap only, PO is kept invariant. Formally this is
shown as follows.
wp(v :swap(j, £(j)); £ =Swap(f-1(j),j); j = j+1, PO) =
((PO[F « F+1DIE « £ Dlv « v']
where £' = £L£71(3) « £(3), 3 « £(£7 (M, v' =

f' is a permutation of O .. n-1

= £ o p is a permuation, where p is thepair exchange "f-l(j) <> 3"
and this holds true, because f being a permutation on account of PO,
and p being a permutation, so is the compositiorn £ ° p

-1
(Note that, f being a permutation, the inverse f£f is well defined!)

wp(v :swap(j, £(3)); f':swap(f—l(j), j)i 3 = j+1, P1)
= ((P1[J « F+1N[Ef « £' DNv « v']

-1 -
£ (5) « £(3), 3« £ (GN]
v [3 « v(E()), £(3) « v(I] jﬁkﬁﬁ?iﬂ
_~~ =0s 3+l <n and A i: O .. n-1. v' (£ (i)) = V(F(i)) and A i: D coga £'(4) = i.

where £

'
\"2

4
The first term is implied by Pl andx%#n-l ; Wwe prove

a: v'(£'(i)) = V(F(i)) , and
b: i>j or £'(i) = 1
from Pl by cases on i:

For f-l(j) #1# 3:

a. v' (£'(i)) = (def £':) v'(f(i)) = (def v':) v(£(i)) = (from Pl:) V(F(i))

b. f'(i) = (def £':) £(i) = {from P1:) i, if i s j

For i 3

a. v'(£'(3)) = (def £':) v'(j) = (def v':) v(£(j)) = (from Pl:) V(F(]))
b. £'(j) = (def £') 3 .

£ 9

a. v'(f'(i) = (def £':) v'(£(j)) = (def v':) v(j) = V(f(f-

For i
1
(

V(F(1))

-1
i, hence i=f£f (j) 2 3j . Now

-1
£ 7(3) =3 and £'(i) = £'(3) = J =

b. (from P1:) A i: O .. j=1. £(3)

-1
either i =f (3) >3 , or i

Final program: the ghost variable eliminated

There is an additional invariant relation, which enables us to eliminate
variable £ :
2
P2: A i: j .. n-1. f(i) = first elt in the seq F(i), F (i), F3(i)

which is 2 j .

Here follows the proof of the invariance of P2.
-1 . .
(3), 3):i 3 = J+1, P2) =

wp(v :swap(j, £(3)): £ :swap(£f
= ((P2[3 « 3+1D[f « £'D v « v']
where £' = £[£ 1(3) « £(3), 3 + £(£7(3)]
and v' = v[j« v(£(3)), £(3) + v(j)]
= A i: j+1 .. n-1. £'(i) = first elt in the seq F(i), F2(i), F3(i) ce
which is 2 j+1 .

We prove the requirement for £'(i) from P2 by cases on i.

-1
For J+1 € i £ n-1 and i#f (3):

£1(i) = (8ef £':) £(1) {and this is > j on account of PO and Pt}
2
= (from P2) the first elt in F(i), F (i) ... which is > j |
so £'(1i) = the first elt in the seq F(1i), Fz(i) ... which is 2 j+1

-1
For j+1 € i < n-1 and i = £ " (j):

[4

1

i

14

j)) = (from Pl:)

-1
(def £':) £(j) {and this is > j on account of PO, Pl and f ()#3}

£'(1) =
= (from P2:) the first elt in F(j), F2(j) ... which is 2 j ,
so £'(i) = the first elt in the seq F(Jj)., F2(j) ... which is 2 j+I ee. (%)
also 3 = £(£1(3)) = £(1)
= (from P2:) the first elt in F(i), F2(i) ... which is 2 j eo. (*%)

Combining (%) and (**) yields
£f'(i) = the first elt in the seq F(i), Fz(i) ... which is 2 j+1

This, by the way, is the most non-trivial step of all verifications.

Hence, just before v :swap(j, £(j)) we may compute f(j) as follows:

4 o® =45 F(3); doaB < I > 4% af = 4% F(af) od {a&=£(]} .
The invariant relation of the repetition reads:

£(j) = the first elt in the seq gf ,F(q‘), F2(q'), F3(ql) ... which is 2 j.
The verification is easy, and is left to the reader. In additien PO, Pl, P2,

and j#n are invariant as well, because they do not contain ggggu ab .

Once the above line has been inserted, and v :swap(j, £(j)) has been
replaced by v :swap(j, g8) , it appears that f is not used at all --
except in updatings of itself --and may therefore be deleted. So we have

proved the correctness of the given program.

In conclusion. The ghost variable f has enabled us to split the program

construction and the invariant relation in two easily comprehensible and
separately verifiable parts. The preliminary mathematical properties proved
by (Duijvestijn 72) have, more or less, been verfied during the straightforward
and, indeed, rather boring verification of the invariants. Thus the only
interesting feature of the correctness proof is the formulation of an elegant
invariant.
b
References
Dijkstra, E.W.: A Discipline of Programming, Prentice Hall (1976). 1972
Duijvestijn, A.J.W.: Correctness proof of an in-place permutation, BIT 12 (22}
318-324.
?ot\xﬁ'wf et freve sleppivess
CWW\Q%?MW& T Yhawl. Doailse SwneesTea «ﬁf e
W _w@#wm—ﬁw&ﬁe W o F(Lmeu/o eV W a)f M }uurgr

