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1.

Introduction and conclusions

In this paper we describe and analyze various ways the algorithm PARTITION

(Hoare 61) could have been constructed.

The characteristics of this paper are the following.
(1) All developments take place by quite formal manipulations, minimizing
the need for inspiration, invention, intuition or what you may call it, and
fully in the spirit of "A discipline of programming” (Dijkstra 76) .
(2) Unlike (Dijkstra 76) we also describe some (tricky ?) program trans-
formations. But needless to say, they are formally treated as well. Also, we
extract the general principles behind them. (Sections 5-7).
(3) We explicitly distinguish two pragmatics for the repetive construct.

(Sections 3 and 4).

The following conclusions may be drawn.
(4) Some quite satisfactory programs are constructed with very little
inspiration needed. (Sections 3 and 4)
(5) Dijkstra's repetitive construct allows several solutions which are not
easily described with the usual while-statement. (This conclusion is meant
for the uninitiated reader only). (Sections 3 and 4)
(6) The program structure mostly occurring in the literature is obtained
from the simpler guarded command version by "restricting nondeterminacy”.
(Section 6)
(7) The invariant relation prompted by the program specification differs
from the one mostly used in the literature but leads to equally satisfactory
programs. (Section 3)
(8) vVan Emden's version arises more naturally than Hoare's original version,

(Van Emden 71) (Hoare 61). (Section 8)

The program specification

Given an integer array z and integer constants m,n satisfying
z.lob<m<n<z.hib , and integer variables 1,r , it is the purpose of the
program to permute the array z (m..n) and partition it into a leftpart
z(m..L) of small elements, a rightpart z(r..n) of large elements, and
a middle part z(l+1..r-1) of equal elements in value in between the small
and large ones. Either of the parts may be empty, but neither the left part
nor the right part may be the full array z(m..n) (hence m..n must be

nonempty) .



In the development of the algorithm it has appeared that we only need

z:swap as assignment operation to z . Hence the final value is a
permutation of the initial value. For simplicity we will use this knowledge
in advance and formulate the following constraint.
C: z:swap is the only value changing operation allowed on z
(The remainder of) the relation to be established is easily formalized as
follows.
R: m-1<l<n and m<rsn+l and l<r and

Ev. z(m..l)sv<z(r..n) and v=z(l+1..r-1)
It is not requested whether the segment I+1..x-1 should be minimal, i.e.
empty, or maximal, i.e. both 1:=1-1 and r:=r+l will certainly
disturb R . Any such request can be dealt with after the establishment

of R .

. Developments maintaining I<r

Relation R .strongly suggests a candidate for an invariant relation:

drop the term v=z(l+1..r-1) . What remains is easily established by

1,r:=m-1,n+1 . The difference between ' r and 1 seems a good
candidate for the variant function. On account of the invariant relation the
difference is bounded below by one; so we substract one from the difference
in order to obtain lower-bound zero. Thus we obtain the invariant relation
- P1 and variant function T1
p1l: m-1<7<n and m<rsn+l and I<r and z(m..l)<z(r..n) ,
T2: r-1-1
We will now try to develop the repetition do "mnt P1 dcr T1" od (this

abbreviates gg_"maintain P1 and decrease T1" od ).

Let us consider l:=l+1 ; it is an obvious candidate for a decrease
of T1 , the invention of which doesn't require too much inspiration. We
compute wp(l:=l+1, P1) and wdec(l:=1l+1, T1) ,
wp(l:=1l+1, Pl1)=

= pP1[1+«1+1]
= m-1<l+l<n and m<r<n+l and l+l<r and z(m..l+1)<z(r..n)
= l+1#n and l+i#r and z(l+1)2z(r..n) , provided Pl holds
= n#l+l#r gﬂg_z(l+1)5z(r..n) , provided 123 holds.
For wdec we follow (Dijkstra 76) p. 43.
wdec(l:=1+1, T1) =



= tmin<T1-1 where tmin = min tO. wp(Z:=1+1, T1<t0)

= n " tmin = min t0. r-1-2<t0

r-1-2

= " " tmin
= y-1-2<r-1-2
= true

Thus we find as a suitable "step, decreasing Tl vhile maintaining

P1 ", Al and analoguously A2

Al: n#l+l#r E§E§_2(1+1)sz(r..n) + 1:=1+1 ,

A2: l#r-1#m Eggg_z(m..l)sz(r—l) > ri=r-1

Note that we have replaced and by cand in order to make the evalua-

tion of the second term well defined.

Not surprisingly, the alternatives Al and A2 are not sufficient;
do Al 0 A2 od does not establish R . Therefore we look for further
alternatives decreasing T1 while maintaining Pl . It is left to the
reader to imagine that z:swap(l+l,r-1); l;r:=l+1,r-1 may do when neither

of the guards of Al and A2 holds. Formal calculation shows:

wp (z:swap(l+1,r-1); Z,r:=l+1,r-1 , P1) =
= wp(z:swap(l+l,r-1), wp(l,r:=l+1,r-1 , P1))
= wp(z:swap(l+1,r-1), P1[l,r « 1+1,r-11)
= P1[l,r « 1+1,r-1][z « z']
here and in what follows z' is defined by
z' (i) = i;_i=l+1 + z(r-1) 0O i=r-1 » z(I+1) O I+1#i#r-1 » 2(i) fi
= m-1<l+1<n and m<r-1<n+l §E§_1+Lé;—1 and z'(m..l+1)<z"' (r-1..n)
= r#l+1#r-1#1 (provided Pl nolds) and z'(m..l+1)<z' (x-1..n)
= 2#r-1#1 and (z'(m..1), z'(l+1))<((z'(x-1), 2'(z..n))
= 2#r-1#1 and z(m..l)<z(l+1)>z(x-1)<z(r..n) nrovided P1 holds.
Secondly,
wdec(z:swap(l+1,r-1); Il,r:=l+1,r-1 , T1) =

tmin<T1l-1 where tmin = min tO0. wp(~, T1<t0)
= " " tmin = min t0. (T1<t0)[Z,r « I+1, r-11[z « z']

= " " tmin = min t0. (r-1)-(I+1)-1 < tO
= " " tmin = r-1-3

r-1-3 < r-1-2

true
Hence a suitable alternative is
A3: 2¢r-1#1 cand zim..l)<z (l+1) 2z {r-1)sz(r..n) »

z:swap(l+1,r=1); [,r:=/+1,r-1
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Unfortunately we are still not through. With the initialization
1,r:=m-1,n+1  the repetition do Al [J A2 0 a3 od doesn't establish
R . Indeed, all guards may be false and R needn't hold if l+1=n .

(This situation can occur as follows. After the initialization r..n is
empty, so z(l+l)s<z(r..n) holds for all ! , and the first alternative
may be executed until 7+1=n .) It seems guite hard to add another
alternative to handle this case. (Try it) However, if m<n the nasty
emptyness of m... and r..m may easily be avoided by the following
initialization:

if z(m)sz(n) - skip O z(m)3z(n) - z:swap(m,n) £i;

1,r:=m,n {note that l<r requires m<n}.
Indeed, m<l and r<n is kept invariant independently of the guards, and
on account of l<r we may simplify the guards so as to obtain the
repetition si and invariant relation P2 .
p2: Pl ggg_msl and rs<n , or simplified,

m<l<rsn and z(m..lYsz(r..n)
§1:.do a4 0 a5 [J 26 od
A4: l+1#r cand z(l+1)sz(r..u) » L:=l+1
A5: l#r-1 cand z(m..l)s<z(r-1) ° r:=r-1 ,
B6: 2#r-1#1 cand z(m..l)<z (1+1) 2z (r-1)<z(x..n) >

z:swap(l+1,r-1); Lyxr:=Ll+l,r-1 .

The above initialization and repetition establish R .
Proof. On account of m<l and rsn
(1) the segments m..l and - r..n are nonempty.
Now assume 1+1<r-1. On account of the falsity of all guards, we find from

Ad and A5 respectively:

(2a,b) z(l+1)£z(r..n) -, or on account of P2 and (1), z(m..l)<z(l+1) ,
(3a,b) z(m..l)£z(xr-1) , or on account of P2 and (1), z(r-1)<z(r..n)
From A6 there arise four possibilities:
either: I+1=r-1 but with (2b) this contradicts (3a),

or: z(m..Ll)£z(l+1) but this contradicts (2b) +

or: z(l+1)<z(r-1) but with (2b) this contradicts (3a),

or: z(r-1)£z(r..n) but this contradicts (2b) .
Hence all possibilities lead to a contradiction. Therefore 1+14r-1 or,
equivalently, I+1..r-1 is empty; in this case b2 implies R

(End of proof.)



Remark. In view of the invariant relation P2 , the conditions
1+1#r, l#r-1, 2#r-1#1 are equivalent with respectively
1+1<r, l<r-1, l+i<r-1 . However, in general the latter are stronger than
the former, and robustness decreases if we replace any of the former by the
corresponding one of the latter. Indeed, if accidentally the program is
executed with not m<n , then fortunately s1 will not terminate
properly, whereas it will terminate (consequently with unreliable results)

if any of the stronger conditions has been used. (End of remark.)

Above we had the strategy to develop the repetition - do "mnt P2 dcr
Ti" od . We will now take another strategy. Note that P2 Egg_r—l=1
implies R . Thus we try to develop the following repetition:

do r-l#1 » "gvn r-1#1 mnt P2 dcr T1" od .

Formal calculations show:
wp(l:=l+1, P2) = z(l+1)<z(r..n) provided P2 and r-l#1 holds,
wp(r:=r-1, P2) = z(m..l)sz(r-1) provided P2 and r-l#1 holds,
wp(z:swap(l+1,r-1); 7,r:=l+1, r-1 , P2) =
1¥1#r-1 and z(m..l)<z(l+1)2z(r-1)<z(r..n) provided P2 and r-l#1 holds,
The wdec - of any of these statements with respect to T1 equals
- true , and moreover if r-1#1 then certainly one of the conditions
will hold. Thus the repetition may read
§2: do r-1#1 -
if z(Il+1)<z(r..n) > l:=l+1
0 z(m..l)sz(x-1) = r:=r-1
0O Z+1#r-1 Egg_z(m..Z)SZ(Z+1)zz(r—1)sz(r..n) -
z:swap (l+1,r-1); L,r:=l+1,r-1
fi
od
Note that the proof of the establishment of R is now replaced by

essentially the same proof of proper termination of the alternative construct.
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Remark 1. We can make the program more robust by replacing the term
I+1#r-1 in the third guard by the (stronger) term l+1<r-1 . Indeed,
the disallowed initial state satisfying m=n might lead to proper
termination with unreliable results (if e.qg. z+.low<m=n<z-hib ) in s2 -,
whereas it leads to abortion of program execution with the proposed change.

(End of remark.)

Remark 2. In a subsequent optimization phase the term 1+1#r-1 may
even be deleted, provided the main guard is replaced by r-1>1 (which
unfortunately detracts from robustness ) and the repetition is continued with

if I=r - either 1:=1-1 or r:=r+l (or even both )

O 1I<xr - skip

fi .

The easily verifiable invariant relation then reads

P2 or (l=r and z(m..l)<z(r..n))

In section 7 this transformation is treated in a general setting. (End of

remark. )

. Developments establishing l<r

With some intelligence and inspiration, we may proceed to transform
relation R into an equivalent but differently written relation, as
follows.

l<r and Ev. z(m..l)<v<z(r..n) and v=z(l+l..r-1)
= I<r and z(m..l)<z(r..n) ggg_z(m..Z)sz(Z+1..r—1)=z(Z+1..r—1)$z(r..n)
= l<r and z(m..r-1)<z(Z+1..n) .
Thus the full relation to be established now becomes

R: m-1<Z<n and m<r<n+l and I<r and z(m..r-1)<z(l+1..n)

The above relation, although equivalent to the original R , suggests
a quite different invariant: drop the term l<xr , yielding
P3: m-1<7<n and m<r<n+l ggg_z(m..r—l)Sz(Z+1..n)
This relation is easily established by

if z(m)<z(n) » skip 0 z(m)2z(n) - z:swap(m,n) £fij;

r,l:=m+1,n-1

Note that it is not required that m#n . (Note also that now 1 must grow
to the left and r to the right.) The difference between L and r
seems a good candidate for the variant. function. On account of the invariant

relation the difference is bounded below in case [=m-1 - and r=n+1 ;
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addition of a constant, so that the lowerbound becomes zero, yields

T2: n-m+l-r

Similarly to the previous section, we first try to develop

gg_"mnt P3 decr T2" od

Obvious candidates for a decrease of T2 are the statements 1:=1-1

and r:=r+l and z:swap(r,l): r,l:=r+1,1-1 . Formal calculation shows
wp(l:=1-1, P3) = m-1#1 and z(m..r=-1)<z (1) provided P3 holds,
wp(r:=r+l, P3) = r#n+1 and z(r)sz(l+1..n) provided P3 holds,

wp (z:swap(r,1); r,l:=r+1,l-1 , P3) =

r<l and z(m..r-1)sz(r)zz(l)<z(l+l..n) or

m-1#l<r#n+l1 and z(x)=2z(1) provided P3 holds.
For each of these statements s wdec (S, T2)=true . Thus we arrive at
the following alternatives.
A7: m-1#1 Eggg_z(m..r—l)sz(l) + 1:=1-1 ,
A8: r#m+l cand z(r)sz(l+1..n) > r:=r+1 ,
a9 rsl Eggg_z(m..r—1)52(r)22(l)sz(l+1..n) -

z:swap(r,1); r,l:=r+1,1-1 .

(Rather arbitrarily we have omitted the disjunct m-1#1l<r#n+1 E§E§_2(1)=z(r)
in the guard of Ag . The omission gives a simpler text; the omitted effect
may be obtained by Aq- and IQ; instead.) Fortunately we are through.
After the initialization, the repetition
s3: do A7 O A8 [0 A9 od

establishes 1< (check!) hence R

Above we have developied the scheme do "mnt ;2 dcr T2" od . We will
now describe the development of another scheme. First note that and
l<r implies R . Thus choose the scheme
do Ifr =+ "gvn r<l mnt dcr T2" od .

Formal calculation shows that
wp(l:=1-1, P3)

wp(r:=r+l, P3)

z(m..r-1)<z(l) provided P3 and r<l holds,

z(r)<z(l+1..n) provided P3 and r<l holds,
wp(z:swap(r,2); r,l:=r+l1,1-1, P3) =
z(m..r-1)<z(r)zz(l)<z(l+1..n) provided P3 and rsf holds.

Further, P13 and r<l implies that at least onc of these conditions holds.



Thus we obtain the repetition
S4: gg_rsl -
if z(m..r-1)<z (L) » 1:=1-1
O z(r)<z(l+l..n) » r:=r+l
0 z(m..r-1)<z(r)zz(l)<z(l+l..n) > z:swap(xr,l); r,l:=r+1,1-1
fi
od
Note that again the proof of proper termination of the alternative construct

takes the place of essentially the same proof of the establishment of R

by repetition S3

The two pragmatics of the repetitive construct have led to remarkably

different programs: S3 establishes a maximal difference between A
and r , whereas s4 establishes a minimal difference. Using recursive
refinement (Hehner 76), one naturally obtains a program which nondeterminis-
tically establishes any difference between those two extremes:
S5: "mnt P3 est R":

if I<r - skip

0 m-1#7 cand z(m..r-1)<z(l) » 1:=1-1, "mnt P3 est R"

O r#n+l EEEQ_Z(I)SZ(Z+1..H) + r:=r+1; "mnt P3 est R"

0 r<l cand z(m..r-1)<z(r)2z(l)<z(l+1..n) +

z:swap(r,l); r,l:=r+1,1-1; "mnt P3 est R"

fi .
Note that the correctness arguments of each of the alternatives has been
given in the development of either S3 or S4 or both. (Termination is
guaranteed because T2 is decreased before any of the semi-recursive calls.)
Robustness may be increased by replacing m-1#7 by m<l and r¥n+1

by r<n

In the literature, the development of DPARTITION mostly starts with the



specification as given in section 2 and then proceeds with the invariant
relation of this section, motivating the change in formulation of R by
"inspiration". In the preparation of this paper, I did so as well. However,
I was prompted to apply the formal machinery to the original formulation of

R , avoiding the need for some "inspiration", and thus discovered the
invariant relation and repetitions of sectiocn 3. After all, I £find them as
satisfactory as those of this section. Thus once again there is evidence that

formal program construction may yield quite satisfactory results.

5. "Wirth's trick" as an optimizing program transformation

We now describe an optimizing program transformation found in (Wirth 76).
It is applicable both to developments maintaining I<x and to those

establishing I<r

Recall from section 3 repetition s1 maintaining P2

P2: mgl<r<n and z(m..l)<z{(x..n) .,

Sil: do A4 Oas 0 a6 od ,

Ad: L+ifr cand z(l+D)gz(r..n) » Li=l+l

A5: l#r-1 cand z(m..l)sz(r-1) =+ r:=r-1 ,

A6: 1#r-1l#2 Eggg_z(m..Z)SZ(Z+1)Zz(r—1)sz(r..u) >

z:swap(l+1,r-1); 1,r:=1l+1,r-1 .

Now strengthen the guard of n4 into z(l+1)<z(r..n) . Then I+isr is
an additional invariant relation of that guarded command (because r..n is
nonempty) , and it is already invariant over AS (independently of its guard)
and A6 , and it is also initially true with l,x:=m,n (because m<n
is already assumed). Analoguously the guard of A5 may be strengthened. Thus
we obtain the alternatives
Ad': z(l+1)<z(r..n) = L:=l+1
A5': z(m..l)<z(r-1) » r:=r-1
Although two guards have been strengthened, repetition
S1' : do a4' 0 A5' O A6 od

still establishes the emptyness of I+1..x-1 hence R

Similarly we may change S3 which maintains P3
P3: m-1<l<n and m<r<n+l and z(m..r-1)gz (l+1..n)
s3: do A7 [1 A8 [1 A9 od
A7: m-1#1 cand z(m..r-1)<z(l) » L:=L-1 ,

AB: r#n+l cand z{ry<z(l+1..n) = r:=r+l
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A9: r<l Eégg_z(m..r—1)52(r)22(l)$z(l+1..n) -
z:swap(r,l); r,l:=r+1,1l-1

Now strengthen the guard of A7  into z(m..r-1)<z(l) . Then m<l is
an additional invariant relation of that guarded command (because m..r-1
is nonempty) and it is already invariant over A8 (independently of its
guard) and A9 , and it is also initially true if (and only if) we assume

m<n . Analoguously the guard of A8 may be strengthened. Thus we obtain
A7': z(m..r-1)<z(l) » L:=l+1 ,
AB': z(r)<z(l+l..n) » r:=r-1
Although the guards have been strengthened, repetition
S3': do A7' O a8' 0 a9 od

still establishes l<r hence R

6.0ptimization by restricting nondeterminacy

For simplicity we only consider repetition S3. Recall
S3: do a7 0 a8 0 A9 od ,
A7: m-1#1 Eggg_z(m..r—l)sz(l) +> L:=1+1 ,
A8: r#n+l cand z(r)sz(l+l..n) + ri=r+l ,
A9: r<l Eggg_z(m..r—1)<z(r)zz(Z)52(Z+1..n) - z:swap(x,l); r,Ll:=r+1,1-1 .
By bringing in more determinacy into the nondeterministic repetition over
A7, A8 and A9 , we improve efficiency in that the evaluation of some terms

of the guards is made superflouos.

First, note that not (A7.guard or A8.guard) and r<l  implies
A9.guard . Therefore we "group together the potential steps over A7 and
A8 ", so that thereafter in (a single, potential execution of) A9 the
term z(m..r-1)sS.z2.<... is superflouos. This transformation yields:
do A7.guard or AB.guard or A9.guard -
do A7 [J A8 od;
if r<l - z:swap(r,l); r,l:=r+1,1-1 0 I<r > skip fi
do .
Second, note that the main guard of the above repetition is at least as
weak as r¢l , whereas the latter is already sufficient for the establishment
of R , Thus strengthen the main guard into r<l

Third, the relation not A7.guard is invariant over A8 , and
not AB.,guard is invariant over A7 . Therefore the inner repetition may
be particularized into do A7 od; QQ_AB gg

All together this yields



S [

s3": do rgl -~
do A7 od; do AB odi
if_rsl + ziswap(r,l); r,l:=xr+l,l-1 0 l<xr - skip fi

od

—

The above transformation may be combined with "Wirth's trick to yield
§3''': do r<l »
do A7' od; do AB' od;

if r<l » z:swaplr,l); r,l:=r+l,1-1 0 I<r » skip fi

od .
Also, the transformation is applicable to s1 (and S1' ) yielding
81" (and S1'*' ):

si"y do r-l#1 ~
do a4 od; do AS od;
if_Z#r—Z#l + z:swap(l+l,r-1); 1,r:=l+1,r-1
0 r-1=1 » skip
1

od .

Remark 1. The transformation seems not applicable to, or at least not so
easy to describe for, S2 and S4 . A conclusion therefore might be that
the pragmatics "develop do "mnt P dcr T" od" leads to repetitions better

suitable for subsequent transformations. (End of remark.)

Remark 2. Repetition s3" (ox S3''' ) often appears in the literature,
always written with ygilg_gg_and if then. In my opinion, s3 is more
fundamental than S3" , and certainly for educational and didactical
purposes s3 is to be preferred over S3" ., Indeed, any programmer
developping s3" must at least have made (but possibly unconsciously) the
reasoning as described in the development of s3 , and in particular must
have thought (but possibly unconsciously) of A7, A8 and A9 as the

basic alternative steps "towards termination while maintaining the invariant".

(End of remark.)

Remark 3. The development of s3" from S3 clearly explains why
the invariant holds again at some intermediate points inside the repeatable
statement: in s3" the alternatives A7, AB and A9 occur in sequen-

tial composition but each of them has been designed so as to maintain the

invariant. (End of remark.)
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Remark 4. In a subsequent optimization phase, we may even replace in
s3" (and S3''' ) the construct
if rgl » z:swap(xr,l); r,l:=x+1,1-1 0 l<xr + skip fi
by z:swap(x,l); r,l:=x+1,1-1
provided afterwards we undo a possible unwanted swap. Thus we obtain
S3x: do r<l +
do A7 og; do A8 odi
z:swaplr,l); r,l:=r+l,l-1
od;
if r-12l+1 » skip 0 I+1<r-1 + 1,r:=l+1,r-1; z:swap(l,r) fi .
The invariant relation then reads
Q: P3 or
1+1<r-1 and (z(m..Z—l),z(r),z(Z+1,,r—1))g(z(Z+1..r—1),z(Z),z(r+1..n)).
It is easy to verify its initial establishment and its invariance, and to
see that the final alternative construct establishes P3 and l<r from the
repetitions postcondition Q and I:r .
similarly for  si" and S1''' provided the main guard is replaced
by r-l>1 . In section 7 we treat this ﬁransformation in a more general

setting. (End of remark.}

A(Qeneral treatment of some (tricky?) transformations

In this section we give a general and abstract treatment of the
program transformations mentioned in remark 4 of section 6, Each of them
transforms the repeatable statement of a repetitive construct so that only
the very last step of the repetition is possibly affected and so that the

unwanted effect can be easily undone afterwards,

The inspiration and motivation for such transformations has been got
as follows. In an introductory programming course we teach the students to
avoid conditional statements inside repeatable statements if their condition
can only be valid at the (very first or) very last step of the repetition.
For instance, one shouldn't write

i1=0;

while in

do if i=o then sum:=0;
j:=i+l; sum:=sum+t(i};

if i=n then print (sum)

od .

e
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Similarly, I find it not elegant and not efficient that in s3', s3", s1!
and si” the guard of the swap-command can only be zg;iéid at the very

last step of the repetition.

The formal justification below of the transformations doesn't prove the
correctness of the modified programs from scratch, but uses the original
correctness proof essentially. It also closely follows the intuitive argument
that "the modification only possibly affects the very last step of the
repetition and the unwanted effect is undone by the final alternative

construct".
In the sequel {A}B{c} abbreviates A => wp(B,C) .

Theorem. Consider a repetitive construct of the form

s: do {P} c » SLO; {x} if Bl > sL1 [ B2 + sL2 fi {P} od

with the following properties.

First, P is an invariant relation and X holds at the point indicated:
(1) {p and c} s1o0 {X and (Bl or B2)}, '

(2) {x and B1} sL1 {r},

(3) {x and B2} sL2 {P}.

Second, if the alternative construct is executed when B2 holds, then the
repetition terminates, even if the whole alternative construct is replaced
by SL1

(4) {x and B2} st {not C},

(5) {x and B2} sL2 {not Cl.

Third, if the alternative construct has been replaced by SL1 , it is
decidable afterwards whether SL1 has been executed rightly or wrongly, by
testing mutually exclusive conditions B1' and B2' :

(6) {x and B1} sit {c or Bl'},

(7) {x and B2} sLl {B2'},

(8) B1' and B2' = false.

And let SLl-‘1 be any statement which undoes the effect of the "wrongly"
execution of SLl in a state X and B2

(9) {x and B2} SLI; st (x and B2} .

And assume finally

(10) the initial establishment of P also establishes C or B1' ,

Then the postassertion P and not C of S is as well established by the

optimized program
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-1
S': do C » SLO; SL1 od; if B1' » skip 0 B2' » sLtl *; sL2 fi .

Proof. Let Q be defined by
Q: (P and (C or Bl')) or (QQ and C and B2')
where QQ is any relation which satisfies
(11) {x and B2} su1 {QQ} st {x and B2} .
(By virtue of (9) such  QQ exist.) Then Q is an invariant of s' .
(proof. At entrance of the loop Q and C implies P . Then by (1),
X and (Bl or B2) holds just before SLl . By (2) and (6) we find
{x and B1} sLl {P and (C or B1')}} , and by (9), (5) and (7) we find
{x and B2} sLi [oQ and C and B2'} . Hence Q is reestablished upon
exit from the repeatable statement.)
From the postassertion Q and not C the relation P ggg_ggg_c is
established by the final alternative construct,
(proof. Using (8). it is obvious for the first alternative, and for the
second one we use (8% then (11), (3) and (4}.)
The initial establishment of @ follows from (10). (End of proof.)

As an example we apply the theorem to program s3" and obtain S3%
as already shown in remark 6.4 . Recall
s3": dorzl -~
do A7 od; do A8 od;
ifr<l~ zsswap(r,l); r,l:=r+1,l1-1 [} I<xr - skip fi
od .
So it is obvious how to define c, SLo, Bl, B2, SL1 and SL2 in order
that
s3" = do C + SLO; if Bl - SL1 [ B2 » SL2 £i od .
Note that X is the invariant relation P3 . We choose
Bl' : r+igl-1l ,
B2' : l-1<r+l ,

SL1—1:

1,r:=l+1,x-1; z:swap(l,r) .

It is now very easy to verify conditions (1)-(10) of the theorem;
therefore the program

$3%: do C » SLO; SL1 od; if BI' » skip [1B2' ~ s1”!; sL2 £i

is correct as well.

Remark. Note that we even need not know the invariant relation of

S3* . The parts of Q necessarily known duc to the verification of
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conditions (1)-(10) are P, C, Bl' and B2' , but not QQ . Indeed,

condition (9) can be proved without implicitly deriving Q0 , as follows.

First, any predicate P , on which SLl will properly terminate, is
-1
invariant over SL1; SLl (which may be proved by textual manipulation).

Second, from (3) it follows that sLl will properly terminate on

X and B2 . (End of remark.)

The intuitively similar transformation of remark 2 in section 3 can't
be proved by the above theorem. True, program S2 can be brought into
the required form by trivial textual manipulations, but no mutually
exclusive relations  Bl' and B2! can be found, and quite essentially,

z(m..2 2z (1+1)22(r-1322(x..nY  implies, if I+l = r-1 , both the first
and second guard. The statement of a theorem for this case is "left to the

readexr".

It is left open for discussion whether the transformations are "tricky"
or not. It might be argued that they are not, because they are justified by
such general theorems, However, it might as well be argued that they are,
because the statement of the theorem is so lengthy and because the need for
two different theorems for two similar cases suggests that no general

principle is involved.

Further implementation.

Only the array comparisons, like z(m..x-1)2z (1} and so on, need to

be implemented further.

The most obvious way is to introduce two variables leftmax and
rightmax which invariantly satisfy, e.g.,
leftmax = Egg_z(m..r—l)
(or leftmax = max(z(m..r-1),-inf) if m..r-1  can be empty) .
The condition z(m..x-1)gz (1) may then be represented by leftmax < z (1)
and so on. The additional invariant relations are easily established and

kept invariant as well.

Another possibility, in our view requiring more inspiration, is to
choose a constant value v , invariantly satisfying, e.g.,
z(m..r=1)gvez(l+1,..n) .

This is easily established by vi=(z(m)+z(n))/2 . The condition

z(m..r-1)zz(l) may then be strengthened to vez (1), and so on
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Although all three guards are strengthened, they are jointly still weak
enough for the establishment of R or for the proper termination of the

alternative construct,

Jﬁj Remarkably, the former choice, which is the obvious and exact
implementation of the "formally derived" algorithm, yields a better perfor=
mance than the latter, (Van Emden 70). Thus once more there is evidence that

quite formal developments may lead to practically satisfactory programs.
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