COMMENTS ON "MERGING PROBLEMS REVISITED"

by

Maarten M. Fokkinga
Twente University of Technology,
Department of Applied Mathematics,
P.0. Box 217, 7500 AE ENSCHEDE,
The Netherlands.

August 1978

Abstract. It is shown that the invariant relation in the chapter

"Merging Problems Revisited" of "A Discipline of Programming" by

E.W. Dijkstra (Prentice Hall, 1976) is unnecessarily strong d
and complicated, and that a suitable, weaker and simpler invariant
relation may be obtained more easily. This holds independently of the

knowledge of the final representation of the sets.

Keywords and phrases. Invariant relation, variant function, guarded

commands, programming methodology.

Contents.

1. Introduction

2. The simpler invariant

3. Generalization to intersection and exclusive union
4. Representing sets by monotonic functions

5. Final remark



1. Introduction t

In the chapter "Merging Problems Revisited", Dijkstra gives a
formal treatment of the development of a program for the establishment
of the union of two sets of integers. He gives two pages of reasoning
for the formulation of the invariant relation; included in the reasoning is
an unmotivated theorem. We show in section 2 that the invariant is
unnecessarily complicated and constraning the development of the algorithm.
A much simpler invariant will do as well, while its formulation seems to
require less invention and inspiration. Even if the ultimate representation
by monotonically increasing functions.is'taken %nto account in an early stage,

the above holds true as shown in section 4.°

For ease of comparison we follow Dijkstra's notation So we write
+ and +* for union and intersection; z * {e} = {e} then means that
e is a member of z , and x * X = x that x 1is a subset of X .
The tilde in x + y demands that x * y = @ s,and in x = y that
X *xy=yY.

*

2. The simpler invariant relation [

Oon p. 124 line 10 Dijkstra starts the development of the algorithm.
At this very point we propose to deviate from his approach. We try the
standard technique

"what you want to be computed is

the result achieved hitherto together with

what is still to be computed"
in order to find a suitable invariant. Application and a little inspiration
yield
Pl: X + Y =z + (x+y)
where x,y are variables with initial values X,Y and 2z is the result

variable =-- with initial value § -- .

Remark. The standard technique also yields the following invariants.

For summation : tl+ee+tn = 2z + ti+ee+tn ,

for multipication : tlikeextn = z * tixee*tn ,

for exponentiation: XY =z * x¥

Characteristic is the view towards the future -- what still is to be

computed -- in stead of back to the history =-- the way 2z



has been computed. Compare e.g. the above relations with

for summation : 2z = tl+e+ti-1 ,
for multiplication: 2z = tlx°c°xti-1, )

o v-2J.y 2 .
for exponentiation: 2z = X and x = X for some j.

(End of remark.)

Remarkably Dijkstra also mentions P1 , but then immediately applies
The Theorem. The invariant relations thus found essentially allow to identify
z, X and y with members of a partioning of X+Y¥ , X .and Y respectively.
It is this identification (and the wish for it!) which is completely
absent from our reasoning, and which, we think, ié caused by a too operational
point of view, looking back to the computational history, as expressed
on page 124 lines 10-24. (Not requiring that " x,y is a subset of X,Y¥ "
(although it turns out to be so) might be compared with not requiring
that " x,y is a particular multiple or fraction of X,Y ¥ (although it turns

y

b4
out to be so) as addition to the invariant X = 2z*X for exponentiation.

Both requirements might unnecessarily restrict the massaging of x,y and z .)

The relation Pl is sufficient for the development of an algorithm.
However, let us now assume that z:=z¥{e} is the only operation available
for addition of elements e to z , and that it will pay off to avoid testing
whether e already belongs to 2z or not. (But note that this assumption
need not be valid if sets are represented by unordered lists or boolean
functions.) So we may try to guarantee that such elements are not member of
2z . On account of Pl the only candidates to be added to 2z are the elements
of x+y . Thus we take as additional invariant
P2: zx(kt+ty) =0 ;, or equivalently

P2': z¢éx = @ and zxy =@ -

Similarly to the calculations on p. 128 we may now verify that the
following alternative keeps Pl and P2 invariant.
Al: x*{e} = {e} and y*{e} = g » z,x:=z%{e}, x={e} .
But Pl and P2 leave us greater freedom; the following do as well,
{e} ana y*lel = {e} » x:=x={e} ,
{e} and y+lel =9 ~ x,y:=x={e},y¥{e} .

a2: xx{e}

A3: x+{el}
Dijkstra's invariant relations, viz.
X*X = X y*Y =y
x*(Y2y) = @ y* (X¥x) = @
z = {X=x) + (Y=y) ,



may each be disturbed by A2 and A3 . So clearly they unnecessarily
restrict the development. It should be avoided to preclude potential algorithms,

if this is not motivated by assumptions about the sets involved.

Remarkably, the constraning effect of Dijkstra's invariant may be achieved
approximately by the choice of a rather simple variant function. Consider for
instance
T1: card(x+y) .,

T2: card(x) + card(y) . AT does

Both A2 and A3 do not decrease T1 , but theydo decrease T2 .

We said ‘"approximately" because a combination of‘ al Iand A2 (and of
Al and A3 ) does decrease TI1 :

a4: {el,e2}rx = {el,e2} and {el,e2lxy = {e2} + z,x:=z%{e1}, x={el,e2} .

3. Generalization to intersection and exclusive union

The generalization to the problem "establish X8Y = z" , where & varies
over +, * and + (defined by x+y = (x+y)=(x*y) ) is straightforward.
The relations and functions become:

Pl{®): XY = z+(x®y) ,
P2(®): zx(x®y) =@ ,

P2'(®): z*x = @ and z*y = @ ,
Ti(®): card(xey) ,

T2(0): caralo) + cardly) - il T2(®) shows ocer avle of + (3“’4(‘:'“""‘”&/)
o

There are three things/to note. First, Pl(®) shows the two different
roles of + in Pl (+) {’Second, P2'(®) is stronger than P2(®) ; for instance,
a5: x+{e} = {e} and yx{e} = ¢ » z,y:=z+{e},y*e}
does leave P1(+) and P2(+4) invariant, but not Pl(+) and P2'(4) .
Third, variant function T! is less suitable for * and + : processing
a member of x which does not belong to x+y doesnot decrease T1 . Indeed,
on account of Pl and P2 , T! equals card(X@Y) - card(z) , thus requiring

that in each alternative 2z must be extended.

4. Representing sets by monotonic functions

We have already remarked twice that the development of the algorithm
heavily depends on (or anticipates) the representations of the sets involved.
In this section we show how the development could have read, in case we

would have known in advance the representation of sets by monotonically



increasing functions. For simplicity we only pursue the case for exclusive

union.

The main invariant relation P1(+) and variant function T2(+) are
obtained as before. Further, the representation by monotonically increasing
functions eases the following operations in particular: determination,
extension and removal of the least (and greatest) element. For concreteness
sake we write these as f.low, f:loext(é), f:lorem (and £f.high,
f:hiext(e) and f.hirem ) respectively. We denote by fz, fx and fy

the representations of the sets 2z, x and, y .

* Al
4

In order that fz be monotonically increasing and be built up by £fz:hiext(e)
only =-- the operation fz:loext(e) would give rise to a symmetric
solution =-- , we try to guarantee that =z is extended only with elements
greater than those already contained in it. Hence we take as additional
invariant
P3: z < (x+y) , or slightly stronger
P3': z < x and z <y,
where < is defined by x < y <—> Reex, e'ey: e < e'.

So, if we take care to apply fz:hiext(e) only with e from x+y , and
only if P3 holds, then is is guaranteed ‘that fz
is monotonically increasing. (In Dijkstra's development this has been

verfied afterwards!)

Now we consider a decrease of the variant function*): let e be fx:low ,
then fx.lorem removes e from x . Two cases arise. First, if
{e}*(xiy) = {e} then {e}*y =@ . So, extension of 2z with e leaves
Pl invariant, and in order that P3 remains invariant, {e}l<y should hold.
Thus we find -- and may formally verify -- the alternative A6 and
analogously A7
A6: x#@ cand {fx.low}<y » fz:hiext(fx.low); fx:lorem ,
A7: y#@ cand {fy.low}<x » fz:hiext(fy.low); fy:lorem .
Second, if {el*(x+y) = @ then {elxy = {e}. So, deletion of e from vy

*) Note that we do not have the inspiration of processing the least element

of x+y .



leaves Pl invariant, and in order that this may be performed by
fy:lorem , e = fy.low should hold. Thus we find =-- and may formally
verify --

AB: x#@ and y#@ and fx.low = fy.low » fx:lorem; fy:lorem.

Fortunately, 26 - A8 are sufficient: after
S: do A6 [J] A7 [0 A8 od
the relation x=@ and y=@ , hence X+Y¥ = z holds! And the guards are
easily represented; e.g. {fx.low}<y is equivalent to y=@ cor fx.low<fy.low .
Moreover, if we make the same assumption about the additional value
inf = fx.high = fy.high as Dijkstra doés, then the Aiternativesmay take
the following concrete form.
A6': fx.low<fy.low * fz:hiext(fx.low); fxzlorem ,
A7': fy.low<fx.low * fz.hiext(fy.low); fy:lorem ,
A8': inf#fx.low = fy.low + fx:lorem; fy:lorem .
Thus we obtain a more efficient program than Dijkstra does, because the test

for fx.low#inf or fy.low#inf is missing in do A6' [] A7' [0 A8' od

Note that again the relation Pl and P3 , although stronger than
Pl and P2 , is weaker than Dijkstra's invariant. E.g. the following
alternative leaves Pl and P3 invarianf, but disturbs Dijkstra's
(and doesn't decrease T2 ).

A9: x#@ cand {fx.low}<y - fy:loext(fx.low); fx:lorem .

Remark. For completeness sake we describe the next phase in the
development of the above program S . We will make implicit determinacy
explicit, so that unnecessary evaluation of guards is avoided. Indeed,
if =x=@ then only the guard of A7 may hold, and similarly if y=@ then
only the guard of a6 . Hence we place all alternatives under the (joint)
guard x#@ and y#@ (and simplify their guards); after the repetitive construct
either A7 or A6 should be repeated. Thus
S': do x## and y#f
if fx.low<fy.low + fz:hiext(fx.low);fx:lorem
O fy.low<fx.low = fz:hiext(fy.low);fy:lorem

0 £x.low=fy.low > £x:lorem;fy:lorem

if x=@ > do y#@ - fz:hiext(fy.low); fy:lorem od

18 |

(0 y=@ > do x#@ -+ fz:hiext(fx.low); fx:lorem



The last statement if =x=@ > DOl [J y=¢ » D02 fi may even be written
DOl; D02 ; this only shortens the text. (End of remark.)

5. Final remark

May be some other tacitly assumed goals have led to Dijkstra's
invariant. For example, knowing that X and Y are represented by
monotonically increasing functions £X and fY , we may wish to represent
the sets x and y merely by a cut (that is, an index) in the representation
of X and Y ; say var ix, iy:integer . The operations fx.low and
fx.lorem should then be translated into 'FX (ix) ‘andlix:=ix+1 respectively.
This wish indeed leads to :
P4: x#X=x and y#*¥=y and X=x<x and Y=y<y
as additional invariant =-- in both our and Dijkstra's approach -- .

But still the term x*(Y¥=y)=@ and y*(X=x)=f seems unnecessary!



