RRAVE

ANOTHER DIFFERENCE BETWEEN RECURSIVE REFINEMENT AND RECETITION

by

Maarten M. Fokkinga
Twente University of Technology
P.0. Box 217, 7500 AE Enschede

The Netherlands

May 1978

Abstract
It is shown that - when derived with the same reasoning -
[Hehner 761's recursively refined iterations deliver more

acceptable results than [Dijkstra 761's repetitive constructs
do.

Keywords and phrases: recursive refinement, repetition, nondeterminacy,

weakest precondition, strongest postcondition.

Contents
Introduction

The difference

A nontrivial example

References

Introduction

Nondeterminacy seems to be an advantage for the process of
program composition, because of elegance. The more elegant a program
is constructed, the easier it can be understood and proved correct
or incorrect. Let us try to be more specific.

Internal nondeterminacy allows and forces guarded commands in
one same set to be constructed independently of each other. Thus the
program is purged from irrelevant and accidental ordering of some
construction steps, and symmetric‘prbblems may be treated symmetrically.
The conventional if then else and while do hardly allow, let alone
encourage, this.

External nondeterminacy allows the delivery of several final
states, all satisfying the required postcondition. Thus equally
acceptable results may be delivered equally well. It might even be

preferred that any final state satisfying the postcondition can indeed

be reached from some initial state. Let us call this property: purity

(; however, terminology might be improved). Purity might be desirable

as a methodological principle, because it prevents users from exploiting
unspecified properties of the program. (Purity seems to be complementary
to robustness: any initial state nof satisfying the weakest precondition
leads to abortion of program execution.) To say it in other words, a
program P is called pure w.r.t. a postcondition S if the strongest

postcondition of P w.r.t. wp(P,S) is S again!

Note. We could have defined a program P to be pure w.r.t. § iff
for any initial state any state satisfying S can be reached. But then
the program P, which given a glovar x and required to establish true,
should "set x to any value": this requires unbounded nondeterminacy

and makes the concept useless. (End of note.)

Example 1. The following program is taken from [Dijkstra 761p. 53.
The relation to be established is

O<k<nand Ai:0<1i<n: £(i) < £(k),
that is, k should be some index for the greatest value in f (, n and £
are fixed). Note that any of the acceptable values can be delivered in k.

The program is pure.

k,j = 0,1;

do j #n > if £(3) £ £(k) » § = j+
O £() < £(3) > k3 = 3,341
£i

od.

(End of example 1.)

Example 2. For fixed n and £, a prodram is requested for the establishment
of

0 £ k <n and f£(k-1 mod n) < £(k) 2 £(k+1 mod n).
A pure program is ' v
"set k to any value 2 0 and < n";
do f(k-1 mod n} > £(k} »~ k := k+1 mod n
0 £(k) < £(k+1 mod n) + k := k+l mod n
od.

The purity crucially depends on the purity of the first statement w.r.t.
0 £ k < n. We will return to this problem later. (End of example 2.)

The difference

The difference between recursive refinement and do od, we like to
point out, is that the former allows for more purity than the latter
does. More precisely, there are situations in which recursive refinement
delivers more acceptable results than a do od construct -- derived with
the same (patterns of) reasoning -- can do. We like to consider this an

advantage of recursive refinement over do od.

The proof is easy. First,in a recursively refined iteration, the
alternatives may independently specify whether to recur or not. So
nondeterministically the iteration may terminate, having established
the required postcondition, or continue, maintaining the apparently
established required postcondition. (The independent specification whether
to recur or not also enables the multi-level exits; see [Hehner 761].)

Second, the continuation alternatives will of course have been
derived by the same reasoning as in a do od iteration. The termination
alternatives have guards guaranteeing the required post-iteration
condition; although these guards do not explicitly occur in a do od

construct, the necessary reasoning has to be made anyway.

The point is that mostly the termination conditions do exclude the
(weakest) preconditions of the commands which make measurable progress,

but sometimes they do not! (End of proof.}

The proof immediately seems to show a disadvantage. Whenever an
iteration may terminate or continue, termination is to be preferred for
reasons of efficiency. However, we consider 1.t an aspect of a subsequent
engineering phase to trade gain in efficiency versus loss of purity -—-

if so desired --.

A trivial example reads as follows. For fixed m and n, satisfying
0 <m<n, it is required to establish n s k'€ n by the following
assignments to k: k := 0 and k := k+l1. Cfr. example 2.

The following programs may be derived formally, by almost the same
reasoning for each.
Pl: k :
P2: k :

0; dom s k = k := k+l od.
0; do k # n» k = k+l od.
P3: k := 0; "x", where

"' : if m< k> skipO k # n > k := ktl; "x" £i.

A nontrivial example: SPLIT as used in QUICKSORT

Given an integer array glovar a, integers glocom m,n satisfying
a-lob £ m £ n < a-hib, and integer virvar 1l,r. It is requested to
establish
S: m-1 £ 1 <n and a(m..r-1) < a(l+l..n) and m < r < n+tl and 1 < ry
using a:swap(,) as the only assignment operation to a.

Thus a(m..n) is split effectively (1 < n and m < r) into a leftpart
a(m..l) of small elements, a rightpart a(r..n) of large elements and a
middle part a(l+l..r-1) of equal elements in value in between the small

and large ones.

My attempts to give a fully satisfactory derivation of the algorithm
SPLIT has led me to discover the concept of purity, and that purity is
another difference between recursive refinement and do od. I admit however,
that up to now I have found no other nontrivial example which may be used
to illustrate purity. This may explain why that concept has not been
discovered earlier, but it may also indicate that the concept is not a

very practical one; I leave it open for discussion.

In [Fokkinga 78] we formally derive the following three programs,
each one with almost exactly the same reasoning. The invariant relation has
beefi obtained by deleting the term 1 < r from S. With one minor exception*),
each guard precisely implies -— 1in its context -- the required wp(-,-) and
wdec(~,-). It should further be noted that the programs below are just
a stepping stone. In subsequent engineering phases the efficiency may
be improved by the introduction of redundant variables high and low,
by strengthening some guards, by making then some implicit determinacy
explicit (so that unnecessary evaluation of guards is avoided) and so on.

Eventually, any of the well known algorithms may be obtained {Hoare 61,
Wirth 76, Van Emden 70]. .

i Al
i

The initialisation is the same for all three:
if a(m) < a(n) » skip [] a(m) > a(n) - a :swap(m,n) £i;
r vir int, 1 vir int := m+l, n-1;
The iterations, all establishing S, read as follows.
Pl :dorgl-
if a(r) < a(i+l..n) » r := r+l
0D a(m..r-1) < a(l) » 1 := 1-1
O a(m..r-1) g a(r) > a(l) < a(l+l..n) » a :swap(r,1); r,1l := r+l,1-1
fi

od.

P2 : do r # n+l cand a(r) < a(i+l..n) > ¢ r+l

O m-1# 1 cand a(m..r-1) < a(l) » 1 : 1-1

0 r=<1 Eéag‘a(m..r—l) < a(r) =2 a(l) < a(l+l..n) »
a :swap(r,1}; r,1 := r+l1,1-1

od.

P3 : "XXX":

if 1 < r » skip

0 r # n+tl cand a(r) < a(l+l..n) » r := r+l; "Xxx"

0 m-1# 1 cand a(m..r-1) < a(®) > 1 := 1-1; "XXX"

0 r<1cand a(m..r-1) < a(r) 2 a(l) < a(l+l..n) -

a :swap(r,1); r,1 := r+l,1-1; "XXX"

*) We have omitted the texrm ... or m-1 # 1 < r # n+l cand a(l) = a(r)

in the swap-guard in P2 and P3.

Indeed, Pl establishes a minimal difference between r and 1 (i.e.
1=r-1or 1+l = r or 1+l = r-1), P2 a maximal difference (i.e. m-1 =1
cor a(l) < a(l+l), similar for r), and P3 is the only one which can deliver
any difference between these extremes. In fact P3 is pure (; any array

can be delivered as well —— from some suitable initial state!--).

References

Dijkstra, E.W., 1976: A discipline éf programming, Prentice Hall Inc.,
Engelwood Cliffs, N.J.

van Emden, M., 1970: Increasing the efficiency .of Quicksort,
C.A.C.M. 13 (1970) 563-567, 693-694, '

Fokkinga, M.M., 1978: in preparation

Hehner, E.C.R., 1976: A contribution to the programming calculus,
University of Toronto, Revised Januari 1978.

Hoare, C.A.R., 1961: Algorithm 63 Partition, Algorithm 64 Quicksort,
C.A.C.M. 4 (1961) 321.

Wirth, N., 1976: Algorithms + Data Structures = Programs,
Prentice Hall, Inc., Englewood Cliffs, N.J.

Note added in proof. The programs Pl and P3 in section "The difference"
and P3 in section "A nontrivial example", can be made more robust by
replacing:
in Pl: 9m £ k by m # k,
in P3: # by < .

But these changes require some additional reasoning and could therefore
be considered to belong to a subsequent "robustness increasing phase".

(End of note.)

