A NOTE ON THE PRAGMATICS OF THE REPETITIVE CONSTRUCT

by

Maarten M. Fokkinga
Twente University of Technology
Department of Applied Mathematics
P.O. Box 217, 7500 AE ENSCHEDE
The Netherlands

October 1978

Abstract. We formulate and discuss three pragmatics, i.e. thumb
rules for the use, of the repetitive construct, and illustrate them

by means of examples taken from "A Discipline of programming"

(Dijkstra 76).

Keywords and phrases. Guarded commands, repetitive construct, while

statement, recursive recfinement.

Contents.
1. Introduction and conclusion
2. The pragmatics

3. References

1. Introduction and conclusion

In this paper we distinguish several pragmatics (that is, thumb
rules for the use) of the repetitive construct of (Dijkstra 76).
One of them is the traditional pragmatics of the while statement.
We have objections to it and consider it old fashioned; but in spite
of this, it is used several times in (Dijkstra 76).
Our formulation of the second pragmatics almost literally occurs in
(Dijkstra 76), and of course is used there a lot of times. A third
pragmatics is a combination of the other two. We show for some very
simple examples the results of the various pragmatics, and conclude
with the observation that, unfortunately, in some cases the repetitive
construct is not suitable to express both the conceptual algorithm
as clear as possible and at the same time an executable, although

possibly inefficient, program for the algorithm.

2. The Pragmatics

Each of the pragmatics gives us a strategy to follow in order to
establish a given relation R by means of a repetition. The strategy
doesn't guarantee success; if not succesful we should revise the

development of the algorithm.

In the sequel we use the following abbreviations: est: establish,

gvn: given, mnt: maintain, dcr: decrease.

The first pragmatics seems to be used widely for the while statement.
Prl: First invent relations P and Q such that P and Q => R ,
and invent a variant function T (such that P => T 2 0).
Then try to refine the scheme

"est P"; do not Q =+ "gvn not Q mnt P der T" od.

Sometimes the attempt to refine the scheme fails because its
command doesn't necessarily decrease T , whereas it would do so
if the guard not Q is strengthened into not Q' . Then the altered
scheme only establishes P and Q' and some further statements are requested
to establish R from P and not Q' .
Other reasons of failure to refine the scheme might be remedied by

inventing another T or even new P and Q .

Pragmatics Prl seems to be practised frequently in (Dijkstra 76).
In particular this is clear from the explanatory text and the program
schemes in the following examples in chapter 8, "the formal treatment
of some small examples":
El:second example, p. 53; we quote:
do j#n + a step towards j=n under invariance of P od,
do j#n + if E(K)2E(F) » =3+l
O £(x)s£(3) » k,j:=3,3+1 £i od .
E2:second version of fifth example, p. 62; we quote:
gg_a+1#b -+ decrease b-a under invariance of P od.
E3:sixth example, p. 65; wequote:
do h#l > squeeze h under invariance of P od,
do y#0 - §9_2/y +> X,y:=x*x,y/2 od;
y,z:=y-1,z%x
od
E4:seventh example, p. 67; we quote:
do j#n > allsix:=allsix and f(j)=6; j:=j+1 od.
E5: eight example, p. 70; we quote:
do s#r +~ {...} increase s by a suitable amount under

invariance of P1 {...}

We seriously object to pragmatics Prl . The basic idea of guarded
commands is that a command is guarded by (a condition implying) its
wp(-,~) and wdec(~,-). In Prl and each of the above program schemes,
however, the guard not Q arises for quite other reasons; it is in fact
already chosen before the command itself is known!! In addition, Pri
only leads to repetitive constructs with a single guarded command (, that is,

the old fashioned while statement!).
The second pragmatics does justice to the term "guarded command”.
Pr2: First invent a relation P such that for some Q we have

P and ¢ => R , and invent a variant function T (such that P == T20).

Then try to refine the scheme "est P"; do "mnt P dcr T" od .

\

Thus we should invent some statement lists SLi , and derive conditions
Bi such that for each 1

P and Bi ==> wp(SLi,P) and wdec(SLi,T)
The repetition then reads do Bl - SL1 (0 ... [0 Bn -+ SLn od . We will

use BB to abbreviate Bl or .. or Bn

One reason of unsuccessful refinement of the scheme may be that the
guards are not tolerant enough to establish R . If in this case it is
indeed impossible to find more guarded commands, we have at least
established P and not BB so that it only remains to invent a suitable
refinement for '"gvn P and not BB est R" . (However, as a particular
case, P might imply not BB so that the repetition is equivalent to
skip and no progress has been made at alll)

Other reasons might be remedied by inventing another T or even

a new P

Pragmatics Pr2 almost literally occurs in the last paragraph of chapter
6 "on the design of properly terminating constructs". It is also quite
clearly used in chapter 8, in the third example, p. 57, the fourth example

p. 61, and the first version of the fifth example, p. 62.

We now show the result of using Pr2 for the problems mentioned in
examples El and E4 . For fai;ness of comparison, we choose the same
P and T as Dijkstra does.

Ad example El1 ¢ The relevant data are
R: f£(k)2f(l..n~1) and 0<k<n

f(k)z£(1..j-1) and 0sk<j<n
T: n-j
An obvious candidate to consider is j:=j+1 . We calculate and find

P and j#n and f(k)2f(j) = wp(--,P) and wdec(--,T)

There are now two ways to proceed. The first one is to take the alternative
All: j#n - "gvn Jj#n est £(k)2£(j)"; j:=j+1 ,

and fortunately we are through: do All od establishes R . It only
remains to refine "gvn j#n est f(k)2£(3)" . This leads to the
program

Sl: do j#n » if £(k)2£(J) » skip U £(K)<f(J) - k:=j fi; J:=j+1 od .

The second way to proceed is as follows. Choose the alternative

(note the change of and into cand)
Al2: j#n cand f(k)2£(j) » j:=j+1
Alas, do Al2 od doesn't establish R . So we look for further
alternatives, and with a little inspiration ("At least sometimes
be assigned a value, and j is a good candidate") we find
Al3: j#n cand £(k)<E(3) > k,j:=3,j+1
Fortunately we are through: R 1is established by
S2: do j#n cand f(k)Zf(j) + j:=j+1
. <F(4) o> o
U j#n cand £(k)<f(j) k,3/3§1

od .

Ad example E4 . The relevant data are
R: allsix = A iy O..n-1. f(i)=6
(allsix = A i: 0..j-1. £(i)=6) and 0<j<n ,
T: n~j
An obvious candidate command is j:=j+1 . Calculation of wp and
wdec Jjustifies

A4l: j#n cand £(j)=6 » j:=j+1

Alas, do a4l od doesn't establish R , so we go on. At least some

k must

command must have the potential effect of allsix:=false . In that case

any increase of j seems to keep P invariant.

Indeed, calculation show that

wdec(allsix,j:=false,n, T) = true,

wp(allsix,j:=false,n, P) =
= Plallsix,j <« false,n]
= not allsix or E i: j..n-1. £(i)#6 provided P holds
<= j#n and f(j)#6 provided P holds.

{The term j#n is required on account of the range restriction in

E i: j..n-1 and makes as well £(j) defined! And the condition is a

weakest one in the sense that, assuming P holds, for any condition

B satisfying j#n and £(j)#6 ==> B = wp(allsix, j:=false,n, P),
it holds true that B => j#n and f£(j)#6 .)
So we choose
Alt2: j#n cand f(j)#6 - allsix,j:=false,n
Fortunately we are through: R 1is established by
S4: do j#n cand £(j)=6 > j:=j+1
0 i#n cand £(j)#6 + allsix,j:=false,n

od .

Taking an invariant relation P different from the one taken bij
Dijkstra, we also describe the outcome of using pragmatics Pxr2

for example E3 . Given is Y20, we take

Y
R: X =2

Y
P: X =Z*xyandy20,
T: y

The various candidates for a decrease of T are x,y:=z*x,y-1 ,
X,Y:=X*xX,y/2 , x,y:=x*x*x,y/3 and so on. Calculation of wp and
wdec leads to

A31: y#0 » z,y:=z*x,y-1 ,

A32: 2|y#0 - ;(,y:=x*x,y/2 ,

A33: 3|y¢0 > X,Y:=X*X*X,y/3 ,

and so on. The repetition

S3: do A31 0 Aa32 [A33 ... od

establishes R !

In our opinion the programs derived by pragmatics Pr2 express the
conceptual algorithm better than those derived by Prl , although,
admittedly, they might need more adaption if they are intended for
efficient execution on a sequential machine. Moreover, any program
derived in any way should be subjected to a subsequent engineering
phase after it has been formulated in a first form, and the better the
conceptual algorithm has been expressed, the better -- we think -- it is

suited for optimizing transformations.

Example, of typical transformation. Recall program S3:
do a31 [J A32 0 a33 ... od . An obviously correct transformation yields
S3': do y#0 {i.e. the guard of some A3i holds} -

.. do A33 od; do A32 od; if A31 [not y#0 - skip fi
od

Then, on account of the invariance of y#0 over each A3i.command
(for i>1), we may, in the second line of S3' , delete each test
y#0 (and replace not y#0 by false).

Thus we have exploited the nondeterminacy by forcing a particular
"flow through" S3 with the result that the most effective commands
(say x,y:=x4,y/4 and so on) are performed first and some test have become

superfluous. (End of example.)

Suprisingly, repetitions derived by Pr2 may have another serious
drawback. It might sometimes be the case that R has already been established
although still some guards do hold and "repetition continues". Thus we
define
Pr3: the same as Pr2 except that

P and Bi => wp(SLi, P) and wdec(SLi, T) and not R .
Pragmatics Pr3 might be viewed as a combination of Prl and Pr2
However the resulting program doesn't express the conceptual algorithm
as cleas as possible, because the termination condition has been mixed
up with the guards proper. What is needed is a construct which expresses
both the various guarded commands and the termination condition separately;
only such a construct gives the best information for subsequent optimizing

transformations.

Remark. The notational ideal is approximated by use of recursive
refinement (Hehner 76):
“DO" : <]UMP&&M{j
if Q » skip 0 B1 -+ sL1;"po" 0 ... [0 Bn - SLn;"DO" fi .
However, the above text expresses repetition very explicig%y and hence
unpleasantly if repetition is considered a language primitive.

(End of remark.)

Example. Compare the "allsix programs" E4 and S4 . If in the
development of S4 we would not have invented the command
allsix,j:=false,n but only allsix,j:=false,j+l , we would have got

do j#n cand £(3)=6 » j:=j+1

0 i#n cand £(j)#6 - allsix,j:=false,j+1
od .
In this case P and Bi = not R . Indeed, the weakest Q such that
P and Q => R is
Q: Jj=n or not allsix .
Thus in the above repetition each guard may be strengthened with not Q ,
yielding after simplication

S4': do allsix and j#n cand f£(3j)=6 - j:=j+1

0 allsix and j#n cand f(j)#6 - allsix,j:=false,j+1

od

bt

The formulation with recursive refinement reads
54": "DO": if j=n Qg?éllsix -+ skip
{0 j#n cand £(j)=6 » j:=j+1; "DO"
0 j#n cand f(j)#6 -+ allsix,j:=false,j+1; "DO"

fi

(End of example.)

3. References
Dijkstra, E.W. (1976): A Discipline of Programming, Prentice Hall, 1976.

Hehner, E.C.R. (1976) : do considered od, a contribution to the programming

calculus, University of Toronto, revised 1978 January.

