PN N /)
~ Ir{/' \- v {_/

/

Comments on "Rem's algorithm for the recording of equivalence classes”

Maarten M. Fokkinga, 1979 jan. 31.

Abstract. It is assumed that the reader is familiar with chapter 23 of
A Discipline of Programming (Dijkstra 1976) . We give a different motivation
for the property Ax. x 2z f(x) , and obtain Rem's algorithm quite

naturally, meanwhile lifting out its "compelling beauty".

Having seen Dijkstra's algorithms, pp. 161-164, we may continue the
story as follows. It is not nice that both for testing whether p and
q are equivalent and for processing the edge {p,q} , all the
vertices up to the identifying ones have to be traversed. In both cases we
need not go beyond the first common element, if any, of the sequences
(p, £(p), £(E(P)) s-ver) and
(q, £(q), £(£(q)) » ...) .
Let us denote that element, Lif existent, by fce(p,q) .

So let us develop a better algorithm for the equivalence of p and q .
We introduce two variables pO and g0 and choose the following invariant
relation and variant function. The second term of P will express that -
fce(p,q) , Lf existent, has not been passed. '
P : eqv(p,q)=eqv(p0,q0) and (not eqv(p0,q0) cor fce(p0,q0)=fce(p,q))
T ¢ (min k£ =) + (min k. @=" @)
Obviously p:=£(p0) 1is a candidate command: pO#£(p0) gquarantees
effective decrease of T . In order that fce(pO,qO)=fce(p,q) is kept
invariant in case that egv(p,q) and p0#£ (p0) hold true , we
need to check

p0k{q0, £(q0), £(£(q0)), «... }

It is at this point that we propose to exploit the ordering between the vertex

numbers: if x > f£(x) holds for all x then the condition is implied by
either p0 > g0 (whence pO > q0 2 £(q0) 2
or £(p0) > £(q0) (whence pO # g0 and pO 2 £(p) > £(q0) 2 ...)
or f2(p0) > f2(q0) (whence po # g0 and pO # £(q0)
and p0 2 f2(p0) > f2(q0) 2 ...

*)

and fi(pO) > fl(q0) in general, for any i 2 0 .(Proof: for 0 £ j £ 1

*) Note that neither of these inequalities implies another one.

we have J(pO) > 3627 (poy = £1(p0) > £7(q0) = £ J£7(q0) so
fl-J(p) > f (f (g0))) hence pO#fj(qO). Further, for j2 i we have
p0 2 £5(p0) > £4(q0) 2 £7(q0) so pO#E)(q0) . End of proof.)

without further problems, we arrive at the following algorithm;
i may be any value 2 0.
p0 vir int, qO vir int =p,q; pl vir int, ql vir int:=£(p0),f(q0);
do pO#pl and £ (p0)>f (q0) =+ p0,pl:=pl,£(pl)
0 qO#ql and gt (q0)>£(p0) + q0,ql:=ql,f(ql)
od;
(po=tt (p0)>£E(q0) or £ (p0)=£t(q0) or £ (p0)<E (q0)=q0}
ig.fi(p0)=fi(q0) =+ eqv:=true
- O fi(pO)#fi(qO) -+ eqv:=false
£fi
Note that, even when p and g are not equivalent, not all the vertices

up to the identifying ones have been traversed..

Clearly, the edge {p,q} can be processed by the
above algorithm, if the alternative construct has been replaced by e.g.

if £ (ﬁO)sf (q0) + £:(q0)=£" (pO)

0 f (qO)Sf (p0) + f:(p0)= f (q0)

£i,
possibly followed by a second scan compressing the pathes. Suppose however
that we are not allowed to do a second scan. So there is no other choice than

to compress the traversed path, if at all, within the repetition as follows

do pO#pl and fl(p0)>fl(q0) + f:(p0)="new £(p0)"; p0,pl:=pl,£(pl)
0 qO0#ql and fl(q0)>fl(p0) + £:(q0)="new £(g0)"; q0,ql:=ql,£f(ql)
od

In thinking about choices for '"new £(p0)" and "new £(g0)" , it seems
quite natural, on account of Ax. x 2 f£(x), to take x or f(x) of f£(f(x))
or, in general, fj(x) as a heuristic measure for the average length of the pathes
(%, £(x), £(E(x)), ...)
which will be traversed in applications of the equivalence testing or edge
processing algorithm. Let us take i = j. Then, the refinements
"new £(p0)": fi(qO)
"new £(q0)": fi(pO)

effectuate the largest possible decrease of that measure, while leaving

part(f)$(p0,g0) constant and Ax. x 2 f(x) invariant.

Rather surprisingly we may now delete the terms pO#pl and gO#gl from the

guards. Indeed, they were fully caused by the requirement of effective
decrease of T.

But if we now choose, instead of T ,

T': £(p0)+£(gq0)

then, thanks to the updating of £ at p0 and g0 , effective decrease
of T' is guaranteed even if pO=pl and q0=qi vl

Due to this deletion, the repetition terminates with fi(p0)=fi(q0) ; SO

no further statement is needed. Choosing i=1 yields Rem's algorithm.

Conclusion. We have given a quite different, but in our opinion more
fundamental, motivation for the property Ax.x2f(x) than Dijkstra has
done. With this property the algorithms for testing the equivalence of p
and g and for processing the egde {p,a} , become fully symmetrical
in p and q . With regard to the number of evaluations of f , they
seem at least as efficient as the algorithms without that property: avoidable
_;traversals and corresponding compressions of path-parts are merely postponed
| as long as possible.

Given that property of £ , and given the constraint of a single
scan algorithm, Rem's algorithm comes then quite naturally. The only
trick is the deletion of the conditions pO#pl and gO#gql . As a surprising
and beautiful consequence that simple repetition alone updates. £ completely,

even for the last values of pO0 and g0

