Comments on "Rem's algorithm for the recording of equivalence classes"
Maarten M. Fokkinga, 1979 jan. 31.

Abstract. It is assumed that the reader is familiar with chapter 23 of A Discipline of Programming (Dijkstra 1976). We give a different motivation for the property $\exists x. x \geq f(x)$, and obtain Rem's algorithm quite naturally, meanwhile lifting out its "compelling beauty".

Having seen Dijkstra's algorithms, pp. 161-164, we may continue the story as follows. It is not nice that both for testing whether p and q are equivalent and for processing the edge $\{p,q\}$, all the vertices up to the identifying ones have to be traversed. In both cases we need not go beyond the first common element, if any, of the sequences $(p, f_p, f(f(p)), \ldots)$ and $(q, f_q, f(f(q)), \ldots)$.

Let us denote that element, if existent, by $fce(p, q)$.

So let us develop a better algorithm for the equivalence of p and q. We introduce two variables p_0 and q_0 and choose the following invariant relation and variant function. The second term of P will express that $fce(p, q)$, if existent, has not been passed.

$P : eqv(p, q) = eqv(p_0, q_0)$ and (not $eqv(p_0, q_0)$) for $fce(p_0, q_0) = fce(p, q)$,

$T : (\min k. f^k(p) = f^{k+1}(p)) + (\min k. f^k(q) = f^{k+1}(q))$.

Obviously $p := f(p_0)$ is a candidate command: $p_0 \neq f(p_0)$ guarantees effective decrease of T. In order that $fce(p_0, q_0) = fce(p, q)$ is kept invariant in case that $eqv(p, q)$ and $p_0 \neq f(p_0)$ hold true, we need to check

\[p_0 \forall\{ q_0, f(q_0), f(f(q_0)), \ldots \} \]

It is at this point that we propose to exploit the ordering between the vertex numbers: if $x \geq f(x)$ holds for all x, then the condition is implied by either $p_0 > q_0$ (whence $p_0 > q_0 \geq f(q_0) \geq \ldots$),

or $f(p_0) > f(q_0)$ (whence $p_0 \neq q_0$ and $p_0 > f(p) > f(q_0) \geq \ldots$)

or $f^2(p_0) > f^2(q_0)$ (whence $p_0 \neq q_0$ and $p_0 \neq f(q_0)$ and $p_0 > f^2(p_0) > f^2(q_0) \geq \ldots$

and $f^i(p_0) > f^i(q_0)$ in general, for any $i \geq 0$ \(^*)\). (Proof: for $0 \leq j \leq i$

\(^*)\) Note that neither of these inequalities implies another one.
we have \(f^{i-j}(p0) \geq f^j f^{i-j}(p0) = f^i(p0) > f^i(q0) = f^{i-j} f^3(q0) \) so
\(f^{i-j}(p) > f^{i-j}(f^3(q0)) \) hence \(p0 \# f^3(q0) \). Further, for \(j \geq i \) we have
\(p0 \geq f^i(p0) > f^i(q0) \geq f^3(q0) \) so \(p0 \# f^3(q0) \). End of proof."

Without further problems, we arrive at the following algorithm;

i may be any value \(\geq 0 \).

\[
\begin{align*}
 & p0 \textbf{vir int, } q0 \textbf{vir int:=p,q; } p1 \textbf{vir int, } q1 \textbf{vir int:=f(p0),f(q0);} \\
 & \textbf{do } p0 \neq p1 \text{ and } f^i(p0) > f^i(q0) \rightarrow p0, p1:= p1, f(p1) \\
 & \quad \textbf{if } q0 \neq q1 \text{ and } f^i(q0) > f^i(p0) \rightarrow q0, q1:= q1, f(q1) \\
 & \quad \textbf{od;} \\
 & \quad \{ p0=f^i(p0) \textbf{ or } f^i(p0)=f^i(q0) \textbf{ or } f^i(p0)<f^i(q0)=q0 \} \\
 & \quad \textbf{if } f^i(p0)=f^i(q0) \rightarrow \textbf{eqv:=true} \\
 & \quad \quad \textbf{if } f^i(p0) \neq f^i(q0) \rightarrow \textbf{eqv:=false} \\
 & \quad \textbf{fi} \\
\end{align*}
\]

Note that, even when \(p \) and \(q \) are not equivalent, not all the vertices up to the identifying ones have been traversed!!

Clearly, the edge \{p,q\} can be processed by the above algorithm, if the alternative construct has been replaced by e.g.

\[
\begin{align*}
 & \textbf{if } f^i(q0) \neq f^i(q0) \rightarrow f:(p0)=f^i(p0) \\
 & \quad f^i(q0) \neq f^i(p0) \rightarrow f:(p0)=f^i(q0) \\
 & \quad \textbf{fi}, \\
\end{align*}
\]

possibly followed by a second scan compressing the pathes. Suppose however that we are not allowed to do a second scan. So there is no other choice than to compress the traversed path, if at all, within the repetition as follows

\[
\begin{align*}
 & \textbf{do } p0 \neq p1 \text{ and } f^i(p0) > f^i(q0) \rightarrow f:(p0)="new f(p0)"; p0, p1:= p1, f(p1) \\
 & \quad q0 \neq q1 \text{ and } f^i(q0) > f^i(p0) \rightarrow f:(q0)="new f(q0)"; q0, q1:= q1, f(q1) \\
 & \quad \textbf{od} \\
 & \textbf{..} \\
\end{align*}
\]

In thinking about choices for "new f(p0)" and "new f(q0)", it seems quite natural, on account of \(\forall x. x \geq f(x) \), to take \(x \) or \(f(x) \) of \(f(f(x)) \) or, in general, \(f^j(x) \) as a heuristic measure for the average length of the pathes

\((x, f(x), f[f(x)], ...) \)

which will be traversed in applications of the equivalence testing or edge processing algorithm. Let us take \(i = j \). Then, the refinements

"new f(p0)" \(: f^i(q0) \)

"new f(q0)" \(: f^i(p0) \)

effectuate the largest possible decrease of that measure, while leaving
part(f)p_0,q_0 constant and \(\forall x \geq f(x) \) invariant.

Rather surprisingly we may now delete the terms \(p_0 \neq p_1 \) and \(q_0 \neq q_1 \) from the guards. Indeed, they were fully caused by the requirement of effective decrease of \(T \).

But if we now choose, instead of \(T \),
\[T': f(p_0)+f(q_0) \]
then, thanks to the updating of \(f \) at \(p_0 \) and \(q_0 \), effective decrease of \(T' \) is guaranteed even if \(p_0 = p_1 \) and \(q_0 = q_1 \)!!

Due to this deletion, the repetition terminates with \(f^i(p_0) = f^i(q_0) \), so no further statement is needed. Choosing \(i = 1 \) yields Rem's algorithm.

Conclusion. We have given a quite different, but in our opinion more fundamental, motivation for the property \(\forall x \geq f(x) \) than Dijkstra has done. With this property the algorithms for testing the equivalence of \(p \) and \(q \) and for processing the edge \(\{p,q\} \), become fully symmetrical in \(p \) and \(q \). With regard to the number of evaluations of \(f \), they seem at least as efficient as the algorithms without that property: avoidable traversals and corresponding compressions of path-parts are merely postponed as long as possible.

Given that property of \(f \), and given the constraint of a single scan algorithm, Rem's algorithm comes then quite naturally. The only trick is the deletion of the conditions \(p_0 \neq p_1 \) and \(q_0 \neq q_1 \). As a surprising and beautiful consequence that simple repetition alone updates \(f \) completely, even for the last values of \(p_0 \) and \(q_0 \).