Formal Descriptions of Programming Concepts, E.J. Neuhold (ed.)
North-Holland Publishing Company, (1978)

Axiomatization of Declarations and the Formal

Treatment of an Escape Construct

Maarten Fokkinga

{ Tech. Univ. Twente, Enschede, The Netherlands

ABSTRACT

We give Hoare-like axiomatizations for variables, procedures and a new escape
construct. The proof rules treat scope rules properly; simplifications are shown
for a restricted use of global variables and for a disallowance of innerblocks.
It is shown that the axiomatization of the escape construct has influenced its
design.

1. INTRODUCTION

In this section we give three criteria which should be fulfilled by any axiomatization
and we extend the usual formulae expressing partial correctness by an environment
component.

Some criteria

We feel that (some) existing axiomatic definitions are not fully satisfactory. This

holds in particular with respect to the following criteria for the proofrules of

the axiomatic system.

cl. The rules formalize the concept of "scope".

c2. The rules reflect and more importantly direct a (the) natural way of reasoning

about the correctness of the program constructs.

c3. The rules do not necessitate any alteration of the program text and their
{ applications can be written unambiguously within the program text.
Definitions of procedures by temporarily valid rules, viz relative to the scope of
the procedure declaration as in Hoare & Wirth (1973), run the risk not to be a well
understood formal system because temporal validity of proof rules is not well known
in mathematical logic. The rules for procedures presented in Donahue (1976) are
inconsistent because they do not treat the scope rules properly. Rules which model
procedure call by body replacement conflict with c2 because procedures should be
considered as abstractions rather than as abbreviations of a program text and
consequently should be inspected just once. Rules which treat scope rules by
renaming in the program text, Hoare (1971), Hoare & Wirth (1973), conflict with
c3 (and c2). Donahue (1976) seems to be the first one explicitely requiring the
first half of c3.

The environment component

-

The usual formalism of formulae {P}sS{Q} is not rich enough to give a satisfactory
treatment of scope rules due to its inability to express the environment of a
statement S and more importantly, to update the environment. Therefore the formulae
of our axiomatic system have the format "Envi{P}sS{Q}", to be read as "in the
environment Env the behaviour {P}S{Q} holds". Env is a set of formulae representing
semantic properties of names which are statically true in S; these properties may
be described by the declarations in whose scope/range S is contained. The symbol b

222 M.M. FOKKINGA

does not denote the deducibility relation but is merely used as a separation mark
as in Gentzen-like calculi of sequents;the symbol t- is used for deduction in the
Hoare-like system. The typve of formulae which may bé taken into Env will be
described when needed; some typical examples however are "var V: int", indicating
that v is a variable of type int, and

proc{x = Xq Ay = yo}exch(ggg x,y:int{hxg_xo,yO:int}){x =Yg Ay = xo}

indicating that exch is a procedure which exchanges the value of its two para-
meters. In order to describe the updatings of Env the following notation is used:
+ and - for set theoretic addition and deletion,[§§§] for all formulae in Env in
which the main identifier is tagged with xxx (xxx is var, proc, esc, dolalp [§§5_id]
for all formulae of Env in which the main identifier is id and is tagged with xxx,
and [id] for all formulae of Env in which id has a free occurrence. The notion of
free occurrence is as usual; in particular in a formula expressing some semantics
of a procedure, the formal parameter names, included those within the curly
brackets {and}, bind the corresponding names in the entire formula. Bound names
may always be renamed without affecting the meaning of the formulae. Finally,

[id + id'] denotes the usual substitution operator which substitutes id' for each
free occurrence of id - taking care of bound names -; simultaneous substitution

is denoted by [idl,id2 <« idl',id2'].

The environment component clearly corresponds to the environment argument in
denotational semantics, Tennent (1976), and to synthesized attributes in attribute
semantics, Knuth (1968). The keywords var, proc, ... correspond to injection as
well as projection and inspection in a disjoint sum!

The concept of invironment has also been formalized in Clarke (1976) and Apt &
de Bakker (1977). Both however treat the semantics of a procedure as a piece of
program text, thus conflicting c2 and c3.

2. AXIOMATIZATION OF VARIABLES AND PROCEDURES

In this section we distinguish between various syntax properties. These strongly
influence the formal rules for variables and procedures.

2.1. Unrestricted globality

The purpose of any declaration is to introduce a new entity, say with name n, and
to state properties of it. So the environment must be updated with the static
properties of n, nsem say, and potentially existing objects with the same name
must be considered distinct. (

... possibly another premise justifying nsem ...

Envin«n'] + nsemt {R[n+«n']}stmnt{S[n<n'1}
1 Env + {RInew decl-of-n in stmnt ni{S}

where n' does not occur free in Env and n (and consequently R and S).

Some of the static properties of n, nsem, might be clear from the text (the type
and the fact that it is a var or proc), others might require an additional proof
(the net effect of a proc) and give rise to the other premise.

Variable declaration.
Thus the rule for variable declaration reads

Envlvev'] + var v:tv b {R[v<v']}stmnt{S[v<v']}

v
1 Env {RInew var v:tv in stmnt ni{s}

where v' not free in Env, v.
This should be compared with the usual axiomatizations as in Hoare & Wirth (1973):
yar v':tv iy {R}stmnt[vev' I{s}
2 {R}new var v:tv in stmnt ni{s}

where v' not free in R, S and, except for vZv',
not free in stmnt either.

v

AXIOMATIZATION OF DECLARATIONS AND AN ESCAPE CONSTRUCT 23

According to the latter rule the innerblock program writer is forced to choose
new names in the course of the correctness proof whereas - hopefully - he had
chosen the best names you can think of in the original program text. In the
former rule however a new (read meaningless) name has to be chosen for an entity
which is in the inner block much more meaningless than the variable v. Moreover,
according to the latter rule the correctness proof cannot easily be written
within the original program text, whereas according to the former rule we can
place assertions in the program text in a natural way such that they unambiguous-
ly determine the relevant data for the formal rule:
...{R} new var v{«v'}:tv in {R[vev']} stmnt {s[v+v'1} ni {s}...

(’ith a suitable convention of how surrounding declarations determine the environ-
aent.

Initializing variable declaration

Because the declaration has "side effects”" the initial state for stmnt differs
from {R[v«v']} and we also need a second premise:
Env i+ R oR'[v,v'+exp,v]

Envlvev'] + var v:tv - {R'} stmnt {S[v«v']}
3 Env — (R} new var v:tv:=exp in stmnt ni {s}

where v'not free in Env, v.*)

Note that it is very clearly stated that the declaration is nonrecursive: exp
is interpreted in Env in stead of Env [v<«v'].

List of (Initializing variable) declarations

A number of objects may be declared at a time in two ways: either simultaneously,
separated by commas, or sequentially, separated by semicolons. It is very impor-
tant that the defined names are distinct and so the construct is not merely a
nest of blocks each one having a single declaration. Indeed, in the following
rules the substitutions are ill defined if v, v' do not constitute a list of
distinct names and moreover the restoration of the original values of v (performed
by the transition from S[v+v'] into S) is done at once for all members of v
together. In the simultaneous case we have

Env Ry 2 Rl[v,v'+exp,v]
(_ Envlv«v'] + var vty (i=1...n)F {Rl} stmnt {S[vev']}
4 1Ry} new var ..., v :tv :=exp, ... in stmnt ni is}

where v' is a list of distinct names not occurring free in Env, Vv
and the sequential case (denoting VyeesrVy by vy i):

v M = - ' e
Envlv, ;_yov) y gd#var vistvi(3=1...4 R, _ 2R [v ,vicexp, v,], (1=1...n)

J
o Envlivev'] + var vj:tvj (5 = 1...i)F—{Rn} stmnt {s[vev']}
5 Eav F—{Ro} new var ...; vi:tvi:=expi...£2 stmnt in {S}

where v' distinct and not free in Env, v.
o« Written within the program text the latter looks like
. = .o 3 ' i "
-oo (R} new var ...; (R, _,}v;:tv :=exp ... in {r } stmnt {s[vev 1} ni‘{s}

2.2. Restricted globality

We restrict globality in the following way. First define (recursively): a name

*) A deduction of the first premise requires many more rules which will not be
given in this paper. The intuitive interpretation however is that
R o R'[v,Vv'«exp,v] should be proved using facts from Env.

224 M.M. FOKKINGA

n is used globally in a text T if either n occurs free in T or n is used globally
in the declaration of a procedure occurring free in T. Recall further that the
range of a declaration is, informally, the text for which the declaration is valid
and that the scope of a declaration is the range with exclusion of all those
subranges which belong to a declaration of an object with the same name. Then
define: globality is restricted if no name is used outside its scope. The
restriction disallows the following typical example:

new var v; proc p = (v:=0) in ... new var v in p ni ... ni.
In general, all those programs are disallowed whose semantics will be affected
by extending the formal and actual parameter list by the global variable names,
or equivalently, by adding the <nomenclature> of Dijkstra (1976) to each block.
With restricted globality new objects really hide existing objects with the same

name and so the updating of Env should have the form Env-[(n] in stead of {
Envinen']. Although an outer var v is "nonexistent" in an innerblock
new decl-of-v in ... ni its relation to other variables may be changed in the

innerblock as shown by {v<w} new var v in w:=w-1 ni {vsw}. This necessitates
the hypothetical constants in the scheme for declarations with restricted
globality:

--- possibly another justifying nsem ---

Env-[n,n'] + nsem + n':tn' — {R} stmnt {s}
2 Env — {dn':tn'. RAI} new decl-of-n in stmnt gi:Tén':tn'. SAI}

*)
where
a. n' is a possibly empty list of distinct names,
b. no variable used globaly in stmnt is free in T,
c. n is not free in R, S and n'.
(By conversion the range of 3 and later on V extends as far right as possible).

Thus I comprises all relations of interest whose variables can not be subject to
change in stmnt (and in particular fixes the relations of n' to these variables) .
In other words: the transition from S via ni to Jn':tn'.SAI restores the
original values (better: relations) of the variables which have been made
invisible within stmnt.

Although the rule might look more complicated, it actually precribes a simpler
way of reasoning, because it formalizes both the invisibility of an outer n from
within the block and the invariance of some relations I. Thus criterion c2 has
been satisfied. When the list n' is empty, 3n':tn'.A is understood to be A,
for any assertion A.

(Remark. The following adaption of scheme D1,

-—— possibly another premise justifying nsem --- {

Env-[n] + nsem - {R[n+n'1} stmnt {S[n+n']}
Env + {(R}new decl-of-n in stmnt ni {s}

where n' not free in Env,n

fails, because nothing is known about n' from within stmnt, whereas its type is
needed in proving an implication involving n'}.
Here is an example of the use of (D2) for variables:

let the current environment contain var v,w:int,

{o<v<wH v tnat, (v' <A (O<v ' vw'=v)} ~

new {v':nat,} var v:int in {v'<w} vi=wivi=v-1; wi=v {v'sw} ni

@v':nat. (v'sw)A(0<v'Av'=v) HO<vsw]).

The rule requires the pre- and postconditions to be of a particular format and
even prescribes the choice for the bound names n'. This strange feature can be
eliminated by replacing the pre- and postconditions by Ro and So and adding the
premises Env I~ Ro > (3dn':tn’'.RAI) and Env — (In':tn'.SAL) > So.

AXIOMATIZATION OF DECLARATICNS AND AN ESCAPE CONSTRUCT 225

Procedures with restricted globality

Consider the following syntax for recursive procedure declarations:

new proc p (spec f:tf)=body in stmnt ni, where spec f:ft stand for a list of
specifications, viz. var x:tx and val y:ty, indicating the Pascal variable and
value parameter mechanism. Assume further that globality is restricted. A natural
way of specifying some semantics of a procedure p, psem say, is the format

proc {r} p{spec f:ft{hxg_h:th}){Q} where P and Q describe a net effect of p

in terms of the formal parameters f, the hypothetical constants h and the global
variables of p, i.e. the variables globally used in the declaration of p. Note
that the global variables are precisely the free variable names in psem. The
formal val parameters are considered as local variables and therefore may not
ccur free in O (restr.1). The global variables are considered as implieit

sar-parameters and must have a free occurrence in the entire formula in order to

have a consistent and concise interface between the rules for declaration and
call (restr.2). The hypothetical constants may be used to relate the initial and
final values of the (implicit and explicit) var-parameters, e.g.

proc {x=x_-1} 1ncrx2({_XE_x rint}) {x=x_+1} and must of course be distinct from £
(restr. 3 In the sequel, ghese three restrictions are tacitly assumed. We
assume in addition the following syntax property: in each call all var-parameters
(i.e. the explicit actual var parameters and the variable names free in psem)

are distinct.

So let psem abbreviate proc {Pl}p(spec f£:tf {hyp h:th}){Q}.
The rule for procedure declaration then reads
Env—[p] + psem - [£,h] + var £:tf + h:th {P} body {Q}
p Env- '] + psem + p':tp' = {R} stmnt (s}
1 Envl—-igp':tp ".RAI] new proc p (spec f:tf) = body in stmnt ni {dp':tp'.SAl}

where the restrictions on p', R, S, I are obvious from D2.

And the rule for procedure call is an axiom rather than a rule; it closely
resembles the rule for blocks:

PCl: Env + psem b {Jh:th.P[f«alal} p(a){3h:th.Qlf«ala1}
where all var-parameters not free in I.

Again, I comprises all relations of interest whose variables are not subject to
change within procedure p. The way one actually reasons (should reason?) about
procedures might be slightly better reflected in these rules than e.g. those

in Hoare (1971) and Hoare & Wirth (1973). The rules have moreover the advantage
hat their application can unambiguously be written in the program text, see
appendix A.

The following examples show that it is really necessary to have a means of
deleting information from the environment - if no alteration of the program
text is allowed -:

new proc zero = (y:=0) in new proc zero=(y:=1) in zero ni ni,
new proc zero = (new proc zero = (y:=1) in zero n1) in zero ni,
new proc zero = (y: yi=0); proc p = (new proc zero—(y.—l) in zero ni) in p ni.

For each of these blocks the behaVLOur_TEEue ——{y—O} might wronaly be provable,
whereas {true}--{y=1} is right. Thus the rules presented in Donahue are inconsi-
stent, the failure in the soundness proof being a wrong translation from the
axiomatic formula into the denotational one.

Remark

One might feel it more natural to use the formal val-parameters in the post-
condition of psem while expressing their initial values. Consider for example

(a) proc {y= yo} assign (var x val y {hyp ¥q I {x=y } with (b) proc {truel assign
(var x val y) {x=y}. But “because we assume the PAgCAL val-parameter mechanism,

a call like assign{v, v+1) is allowed. Therefore we feel (b) slightly misleading.
It is however quite well possible to allow (b), but then the rules have to force
the introduction of additional hypothetical constants, Yq Say, in the justification

226 M.M. FOKKINGA

of not only psem but also the correctness of a call of p. It will appear that
the correctness proofs as directed by these rules will be quite the same,

Disallowing innerblocks

The language PASCAL disallows innerblocks. All local entities must be declared

at the entry of a procedure body (hence the keyword new is superfluous). This

may look rather inconvenient and one may wonder whether any semantic simplifi-
cation has been gained. It turns out that the rule for declarations may be sim-
plified if in addition the following, quite reasonable, syntax property is assumed
for each procedure the {list of distinct} locally declared names are distinet
from the formal parameter names and also distinct from the global variable names
{which due to the restriction on globally is certainly satisfied when there are (
no initializing variable declarations}. They need not necessarily be distinct
from the formal parameter names and local names of the local procedures. Here

is the scheme for the justification of a procedures semantics:

--- possibly another premise justifying n sem --- (i=1...m)

Env-[n] + n, sem (i=1..m) ~ {R'} stmnt {s}
D3

Env {R}decl-list-of-n in stmnt ni {s}
(where n not free in R,S).

(R' equals R except when there are initializing variable declarations.) Thanks

to the restriction "n not free in R and S" the rule is also sound when innerblocks
are allowed or the distinctness property does not hold; but then the rule is no
longer complete, as shown by the impossibility to prove by (D3)

{v=0} new decl-of-v in --- ni {v=0} and

proc {x=0}p(var x:int){x=0}"= (var x:int in skip ni).
Indeed, actually each name in the precondition R of the procedure body is
necessarily a formal or global parameter, hence distinct from n, and therefore
cannot be made invisible and consequently needs not to be "restored" upon
passing the closing ni.
Here we specify (D3) for the case that the list of declarations is a sequential
one of initializing variable declarations followed by procedure declarations

Env-[v,p] + var vj:tvj(j=1..i—1) F—Ri_laRi[vi+expi] ,(i=1..m)
Env-[v,p] + var v :tvj(j=1..m) + pjsem(j=1..i)
-l£,sh 1+ var £ :ef, + hysth b= {P Joody {Q,}, (i=1..n) (

Env-[v,p] + var va:tvj(j=1..m) + pjsem(j=1..n)|— {Rn}stmnt{s}
A

P e -
2 EnvF{RO]var...;vi.tvi.—expi...;Eroc...,pi(sgec £, :tf,)=body,...in stmnt ni{s}
(where x,p not free in RO,S).

Thus the proof of the procedure body breaks down to (m+)n+l1 independent subproofs.

2.3. Procedures with unrestricted use of global variables

The main problems caused by the use of global parameters - in their full glory -
is that distinct objects may be known under the same name: how then to describe
the semantics of a procedure? Consider for instance the declaration

proc p (var x:int)=zero in an environment which contains var x:int and

proc {true} zero {x=0}.

It seems that a change in the syntax of the language is necessitated in order
to obtain a definition satisfying the criteria. Thus assume that a declaration
of procedures looks like proc p(spec:tf) = spec f£:tf in body corp (cfr Algol 68)
where only the type of the procedure is specified in its heading and not the
formal parameter names. Then we are free to choose new names, f' say, as fancy
formal parameters in the semantics psem so that the globals, £, can have their
own name. It is only in the range of spec f:tf that the globals f should be

AXIOMATIZATION OF DECLARATIONS AND AN ESCAPE CONSTRUCT 227

renamed, into f" say, and the fancy formal parameter names £' should be renamed
into f£:
Let psem abbreviate proc{P}p(spec{f'}:tf{hyp h:th} {Q}

(Envlp«p'] + psem)[£«£"] + var £:tf + h:th b= {P[£,£'«£",£]} body {Q[f,£'«£",£]}

Envlp<p'] + psem — {R[p+«p']} stmnt {s[p+<p']}

P3 v +— {R} new proc p (spec:tf)=spec f£:tf in body corp in stmnt ni {5}

where p' not free in Env,p
and f", h distinct and not free in Env,p,p',f.

Again, it is easy to write it unambiguously within the program text:
... {R} new proc {P} p {+p'} (spec{f'}:tf {hyp h:th}) {g}
= spec £ {«£"}:tf in {P[£,£'«f",£]} body {Q[£,£'+£",£]} corp
in {R[p«p']} stmnt {s[p«p'l1} ni {s} ...

Of course, {«p'} and {«£"} could be omitted if p and f dc not exist in the
environment of the block.

2.4. Conclusion

It has been shown that scope rules may be nicely formalized in an axiomatic
definition satisfying the criteria cl, c2, c3. Thus ocne has a measure to judge the
mental complexity of the various program constructs (in this section: "syntax
restrictions"). In particular it has appeared that unrestricted globality gives
rise to rather complicated substitutions and also necessitates a change in the
syntax, whereas restricted globality yields no problems at all. Moreover it

seems that no further simplification may be gained by further restricting
globality! This sheds another light on "Global Variables Considered Harmful",

Wulf & Shaw (1973).A sequential list of declarations has appeared to be a construct
that should be distinguished from a nest of blocks. The disallowance of inner-
blocks together with some reasonable syntax assumptions really simplify the
semantics.

The more specific deletions from Env, viz -[var v] and -[proc p] should be used
when (and allow that) in the same context a name may denote both a var and a proc.
This feature for instance should be used to formalize functions where the fun
identifier occurring in the body also denotes a var. The next section shows
another application.

n general we would like to take all static properties into the environment in
~stead of the pre- and postconditions. This might cause some troubles when the
ranges are not properly nested, as for instance the <active scope® and <passive
scope> of variables in Dijkstra (1976).

3. THE FORMAL TREATMENT OF AN ESCAPE CONSTRUCT

In Bron et al (1976) we have defined the so called escape mechanism for dealing
with abnormal termination and abortion of program parts in a highly structured
way. The escapes can be used to react to user defined events as well as to system
generated error occurrences. They are efficiently implementable and in harmony
with the block concept. A fuller treatment - except for the formal semantics -
can be found in Bron et al (1976).

In this section we give the axiomatic definitions of the construct as originally
designed, but with a slightly modified syntax. It will appear that at least cri-
terion ¢3 has not been satisfied. An attempt to force the satisfaction of ¢3 will
lead to an improvement.

3.1. The original escape construct

Here is a (rather operational) definition of the escapes.
(a) The block new esc el(val:ty) in stmnt ni declares an escape variable e.

228 M.M. FOKKINGA

As usual the declaration binds the name e in stmnt (and makes the programmer
aware of the fact that abortions may take place within stmnt). In the scope of
the declarations there may occur calls and several definitions of escape proce-
dures e.

(b) The block def escproc e = val y in body corp in stmnt ni defines an escape
procedure e. The - type of the formal value parameters y is fixed by the declara-
tion of escape variable e. The semantics of an escape procedure differs from
normal procedures in that termination of the body causes the block to which the
definition is local to be terminated (thus causing abortion of stmnt and abnormal
termination of the block).

(c) Escape procedure calls read the same as procedure calls. Semantically they
differ from the usual procedure calls in that their execution causes the
"dynamically active" escape procedure to be executed. In other words, escape {
procedure definitions have dynamic in stead of static scope. (Hence var
parameters have been disallowed).

(d) By default the escape variable declaration also means the definition of
escproc e = val y in abort corp. Abort is a standard escape variable for which
it is assumed that a suitable escape procedure has been defined surrounding the
user program.

This completes the definition.

Thus the (implicit) insertion of an escape procedure call can not invalidate the
textually succeeding assertion (because assertions have to be interpreted as
being true whenever control reaches them). If however the programmer wants to
continue an aborted computation anyway, then he should provide some surrounding
block, having a weak enough postcondition, with an escape procedure definition.
Appendix c gives a realistic example. If no escape procedure definition has been
provided by the programmer, abort is called; it will abort program execution and
may give an error message and a dump of the stack and the like.

3.2. The axiomatization

Apart from the axiomatization of our escape mechanism, this section is also in-
teresting because of the treatment of "jumps out of procedures". In some
axiomatizations of goto-like constructs, such jumps have been disallowed, Donahue
(1976), whereas in others true enough they have not been disallowed but neither
have procedures been axiomatized (in a way satisfying c2), Kowaltowski (1977).

In still others there arise scope problems which have not explicitely dealt with,
Clint & Hoare (1972).

As an important, first step we define the formats and some abbreviations expressi
the semantics of (a) escape variables, (b) procedures and (c) escape procedures.
(a) The semantics of an escape variable is expressed by esc e(val:ty).

(b) The semantics, psem say, of a procedure is expressed by

zszzsingrfcizipizsecéfi;Ef gh h:th eiassem(i=1..n}){9}, where
i = ssgproc 1R Ietlyy

The assumed semantics e,assem indicate - in terms of the bound names Ve the fre
names £, h and globals of psem - the precondition E1 on which the escape procedui
e will be called in the body of p and subsequently control will leave the body.
Note that y. is bound in e,assem and that the binding of f and h extends over
e,assem. Thé three restrlcélons of section 2.2 are still tacitly assumed.
(c) The semantics, esem say, of an escape procedure is expressed by

esem = esEroc {ete{(y' elassem(l-l..n))},
where e assem is as above. Rather that expressing a condition transformation, lil
psem does, esem expresses a particular condition, viz. the (weakest) preconditio
upon which its body establishes the block's postcondition. Hence global variable
of the same name as the formal parameters, y say, of its definition might be
involved, even if they are not used globally in its body! (Thanks to a suitable
choice of syntax esem can be written within the program text in a natural way.) !
is called the precondition of esem.

AXIOMATIZATION OF DECLARATIONS AND AN ESCAPE CONSTRUCT 229

(c') The semantics of the escape procedure defined by default has been derived
from the axiomatization of abort: true is a sufficient precondition because the
programs postcondition will not be reached anymore. So

initsem = escproc {truele{()}.

In the rules below we do not explain what should be clear from section 2. Because
the free variable names of esem are not merely the names of the variables globally
used in its body, we will not assume that globality has been restricted.

The rule for escape variable declaration is not surprising, cfr D1,

Envle+e'] + esc e(val:ty) + initesem }— {R[e«e']} stmnt {S[e«e'l}

sc
(Env - {R} new esc e (val:ty) in stmnt ni {s}
where e' not free in Env, e.

The rule for procedure declaration, cfr Dl and P ,
(Env[p«p']-[escprocl+psem)[£+£"] + var £:tf + h:th + e
— {plf,£'«£",£1} body {Q[f,£'«£",£]}

Envlp+p'] + psem — {R[p+p']} stmnt {S[p+p'1}
Env — {R} new proc p (spec:tf) = spec f:tf in body corp in stmnt ni {s}

iassem(ixl..n)

P4
where p' not free in Env,p
and h, f" distinct and not free in Env,p,p',f.

Thus all escapes globally used in body give rise to explicit assumptions e,assem
in psem: each escproc in Env has been deleted in the environment for body!
The rule for escape procedure definition

(Env-[escproc]) [y«y" J+var y:ty+eiassem(i=1...n)F—{E[y,y'+y",y]}body{s[y,y‘3}

Bl Env-[escproc e] + esem — (R} stmnt (s}

Env - {R} def escproc e = val y in body corp in stmnt ni {s}
where y" not free in Env,y.

Thus the justification of esem essentially requires to show that its body
establishes the block's postcondition: after termination of body control will
goto the end of the block. Note the resemblance with and deviations from D1 and
P4, (The following justification of esem does not affect the semantics: replace
(Env-[escproc]) by (Env-[escproc] + esem)).
~Mhe rules for escape procedure and procedure call. Assume without loss of generality
{ «at the bound names Y of e ,assem will not occur free in I,a.

Env + esem j— escproc {Ei[f+a]AI}ei{(yi)} (i=1..n)

EC
U Env +losem —{e[f«+a]al] e(a) [(false}
where no actual (global!) var-parameter occurs free in I and
rc, Env + psem l— escproc {Eh:th.Ei[f+a]AI}e{(yi)} (i=1..n)

Env + psem {Jh:th.P[f+alAl] p(a) {Jh:th.QLf<«a AL}
where no actual var-parameter occurs free in I.

So the only difference with rule PCl is the addition of the premise: it requires
to verify in the current environment the actual assumptions, formally made in the
justification of esem and psem. The assumptions have been weakened by the addition
of the invariant I to their preconditions.

'Finally we give two rules, called Semantics verification, enabling us to deduce
the premise of EC1 and PC2. The first one is a trivial axiom:

iassem(i=1..n) € Env.

The second one is also easy to formulate:

S1: Env F—eisem(i=1..n) , provided e

230 M.M. FOKKINGA

let Env contain esc ei(val:tyi) and also

escproc {Ei}ei{(yi escproc {Eij]eij{(yij)}(j=1..ni) y}i=1..n)

and assume without loss of generality that yij will not occur free in Ij,

then,
Env F-Vyi:tyi.EiDEi ,(i=1..n) *)
Env l—-Vyi:tyi.Ei:!Ii , (i=1..n)

sy Env + escproc {Ei}ei{(yi)}(i=1..n) I— escproc {EijAfi}eij{(yij)}(le..ni,i—l..r

Env b escproc {Ei}ei{(yi)}(i=1..n)
where no variable globally used by e; occurs free in ii' (

Thus in order to verify some "weakened e, assem” one has to prove that its precon-
dition E, implies the one of e, sem already present in Env and one has to verify
suitably weakened versions of the assumptions on e, .(j=1..n,) made by e,. Because
of recursive activation the environment component ifn the third premise Ras been
extended by what is to be verified. Note that the third premise either invokes

S1 or invokes - recursively - S2 again; the number of invocations however is
bounded by the cardinality of the set of mutually dependent escape procedure
semantics in Env. Appendix B contains a sample proof fully exploiting the recur-
sive character of S2.

Any attempt to associate a unique condition with each escape variable will result
in incompleteness, as shown by the following example:

new esc e() in def escproc e = ... {S1} corp in v:=0;{v=0} e () ni {si} ...
def escproc e = ... {s2} corp in v:#0:{v#0} e () ni {s2} ... ni

This should be compared with usual variables; also with them it is impossible to
associate a unique value.

3.3. Simplifying the semantics

Although the definition in terms of normal procedures, 3.1, looks quite simple,
it might be argued that the escape mechanism is too complicated: the rules of
semantics verification, S1 and S2, are rather exceptional. Not only because their
right hand side is the semantics of a name in stead of the behaviour of a program
text, but also because they do not satisfy criterion c3: there is a lot of
reasoning prescribed for each (implicit or explicit) call of an escape procedure,
see again appendix B.

Thus it seems worthwhile to reconsider the design of the escape mechanism, without
weakening its power too much. Clearly the inattactive part of rule $2 is its third
premise, necessitated by the appearance of escproc assumptions in the semantics of
an escape procedure. It reflects that at the site of call, and not known from
their definitions, escape procedures may turn out to be mutually activating, even
if no simultaneous (recursive) definitions have been allowed!

Once the escproc assumptions have been eliminated from the escape procedure
semantics esem, the third premise of S2 is no longer needed and we may merge the
remainder of it together with S1 into the rules for procedure and escape proce-
dure call:

let Env contain psem, esc e, (val:ty,) and escproc {Ei}ei{(yi}}
and assume that yi will- not occur free in I and a, then
Env p—Vyi:tyi. (ﬂh:th.Ei[ﬁ-a]AI)DEi(1=1. .n)

Env — {Jh:th.P[f«alAI} p(a) {Ih:th.Q[f+«alAT}
where no actual var parameter occurs free in I

PC3

*) equivalently: Env[yi+yi] + yi:tyi F»EiaEi(i=1..n) where yi not free in Env,yi.

AXIOMATIZATION OF DECLARATIONS AND AN ESCAPE CONSTRUCT 231

and for escape procedure call a simple axiom suffices,

EP2: Env + esc e (val:ty) + escproc {Ele{(y)} - {E[y+alle(a){false}.

It only remains to eliminate the escproc assumptions from esem. These may be
eliminated either by undesirable "syntax restrictions" (like: escapes may not

be used globally in escape procedures) or by the following change in the
semantics, affecting rule El for escape procedure definition: escape procedure
bodies, unlike procedure bodies, should be evaluated with a binding for their
global escapes fixed in the environment Env in which the definition is considered.
This leads to the following rule.

Let esem = escproc {E}le{(y')} - without the e assem -.
(Env - [escproc e] + esem)[y+y"] + var y:ty —{Ely,y'+y",v1}body{sly,y'«y",y]}

gy EOV - [escproc el + esem |- {R} stmnt {s}

Env | {R} def escproc e = val y in body corp in stmnt ni {8}
where y" not free in Env,y.

The binding might be called "static relative to" the dynamic instance of the
procedure body to wich the definition is local, because Env may contain escproc
semantics assumed, but not statically known, in the surrounding procedure body.
Appendic D summarizes the rules. Appendix C contains a realistic example of the
use of escapes, proved correct according to the new rules. (the program is also
correct according to the original rules).

3.3. Conclusion

Based on the axiomatization of the escape mechanism it was felt that at least
some features were too complicated. The attempt to simplify the semantics has
been directed by a consideration of the formal rules. Very strikingly, it

was only afterwards that we recognized that the formal simplification has resul-
ted in an intuitive improvement as well: now the activation of an escame proce-
dure really escapes the block to which it is local. Thus the above development of
the escape mechanism is quite a nice demonstration of the influence of Hoare-
like semantics on the design of pregramming language concepts, as advocated by
Gries (1976) and others.

It might be interesting to note that the complexity in the original mechanism

_has resulted from an attempt to keep things simple: an exceptional kind of

f

rocedure, escape procedure.was our starting point and in order to have as few
<xceptions as possible escape procedure bodies were treated as much as possible
like procedure bodies! This decision has now been changed. For the same reason
the definition of an escape procedure was originally termed a declaration and
we not only expected but also aimed at a similarity in the formalization of
procedures and escape procedures. The axiomatizations however clearly show that
we had better distinguish between the two concepts and their syntactic appearances.

ACKNOWLEDGEMENT .

I am grateful to Coen Bron for many stimulating discussions.

4, REFERENCES

1., Apt, K.R. & de Bakker, J.W., {1977): Semantics and proof theory of Pascal
procedures, to appear.

2. Bron, C. & Fokkinga, M.M., & de Haas, A.C.M. (1976): A proposal for dealing with
abnormal termination of programs. TW-memorandum 150, T.H.T. Enschede,
Netherlands, november 1976. Also to appear elsewhere.

3. Clarke jr., E.M. (1976): Programming language constructs for which it is
impossible to obtain good Hoare-like axioms, TR-76-287 Cornell University
Ithaca.

4. Dijkstra, E.W. (1976): A discipline of programming, Prentice-Hall Inc.,

=]
L
L]

10.

11.

12,

13.

M.M. FOKKINGA

Englewood Cliffs, New Yersey.

Donahue, J.E. (1976): Complementary definitions of programming language seman-
tics, (thesis) Lect. Notes in Comp. Science 42 (1976) (Springer Verlag).

Gries, D. (1976): Some comments on programming language design. In Programmier
Sprachen, 4. Fachtagung der GI, Informatik Fachberichte 1 (1976) 135-252
(Springer-Verlag).

Hoare, C.A.R., (1971): Procedures and parameters: an axiomatic approach. In
Lect. Notes in Math. 188 (1971) 102-116, (springer-Verlag).

Hoare, C.A.R. & Wirth, N. (1973): An axiomatic definition of the programming
language Pascal, Acta Inf. 2 (1973) 335-366.

Knuth, D. (1968): Semantics of context-free languages, Math. Systems Theory
2 (1968) 127-145. ¢

Kowaltowski, T., (1977): Axiomatic approach to side effects and jeneral jumpsi
Acta Inf. 7 (1977)4, 357-360.

Ligler, G.T. (1975): Proof rules, mathematical semantics and language design,
Ph. D. Thesis, Oxford University (1975).

Tennent, R.D. (1976): The denotational semantics of programming languages, CACM
19 (1976 8, 437-453.

Wulf, W. & Shaw, M. (1973): Global variables considered harmful, SIGPLAN Notice
8 (1973) 2, 28-34.

Appendix A. A proof fully exploiting Pl anf PC1

For each textpart the environment consists of the semantic descriptions connected
to some vertical line in front of the textpart; it is just the usual notion of
scope which has been visualized.

var y;int :int
/y- r P

.

L

[RUENUISN— RS S ORI ORI U U —

e

{o<p<yl
Op':nat.(p' <y) A (0 <p=p"}
T new {p':nat,}
le——proc p (var x val y {hyp X yo} : int)
:x = <y = it: x =
{entry: x Xg A0 <y =y . oexit: x =x+ yﬂ} (
= {x = Xq AD<y = yo} A

wvhile y > 0 {inv: x + y = x_ + Yo AY S 0}

0
dox :=x+1;y :=y~-1o0d

{x = X * yo}

—
in {p' <y}
Bxg, vgr dnte(y = xg A0Sy =y) a(p' <x;=y)} ply, v)
{axo, Yq? int.(y = X + yo) A (p' < xy = yo)}
[2 p* <y}
ni

{Gp'inat.(2 xp' < y) A (0<p=0p"}
{0 <2+%p<y}

AXIOMATIZATION OF DECLARATIONS AND AN ESCAPE CONSTRUCT 233

Appendix B. A proof essentially involving S2.

The environment has been indicated in the same way as in appendix A.

e-esc one (), esc two (), var w

def t 2 > t
'_e_ escproc {true} one {sescgroc {w 20} two {{)})}
= if w <3 then w :=1{w = 1}

else w := w - 3; {w 2 Oltwo () {false}{w = 1} ..e(a)

£i {w = 1 - the block's postcondition}
in def gescproc {true} two {(escproc {w = 3} one {()})}
= if w < 2 then w := 2 {w = 2}
else w :=w + 1; {w 2 3} one () {falseMw = 2} ...(b)

£i {w=12 - implies the block's postcondition: w = 1 v w = 2}
in {true} two () {falsel{w = 2} .o {e)
ni {w=2Hw=1vws=2}

E{w=1vw=2}

Envd]

Proof of calls on line (a) and (b) immediate by S1! We prove line (c) below.

Because in each application of S2 (n = 1 and n, = 1 and) I1 = true, we omit
the second premise of S2.

To be proven Env {true} two () {false} » from (1) by ECI.
Note that escproc {truel} two {(escproc {w > 0} one {()})} € Env,

(1) Env I~ escproc {w = 0} one{()} , from (2,3) by s2.
Note that escproc {true} one {(escproc {w 2 3} two {()})} € Env,

(2) Envi-w 2 0 o true , assumed,

(3) Env + escproc {w 2 0} one {()}~ escproc {w = 3} two {()} , from (4,5) by s2.
2t Env + escproc {w 2 0} one {()} be denoted by Env',

note that escproc {true} two{(escproc {w = 0} one {()})} € Env'

(4) Env'l— w 2 3 5 true , assumed,

(S) Env' + escproc {w 2 0} two {()} escproc {w = 0} one{()} , by axiom s1.

End of proof.

234 M.M. FOKKINGA

Appendix C. Realistic use of escapes, proved correct according to section 3.3.

The environment has not explicitely been indicated.
Assume a (standard)environment containing:

esc overflow(),

proc recip (var x val y {hyp ¥, escproc {yU too small} overflow {()} })
{entry: y = Y, ¢ exit: x = 1/y0}.
A program dealing with matrix inversion may read:

new esc sing();

proc invert (var X val M {hyp MO escproc {MO singular} sing {{ Y} }H \

-1
{entry: M= MO , exit: X = M0 }

= def escproc {Mo singular} overflow {()} Lo
= {MO singular} sing () {false}{X = M4 } corp
in (* standard inverting, using recip for reciprocal: %)

{(a too small > MO singular) A g

{Hyo.(a = yo) A (la = yo) A (y0 too small o M. singular) A ...)}

0

recip (r, a {ayo_(yo too small) A (... A (yo too small > MO sing)...)
implies MO singular})

Qygetx = 1/y) A la =y A .eeeiiin}

{r = 1/a A ..o)

: "
ni {x M0 }

(* inner part of a loop in which matrices are computed and inverses printed: tﬁ
def escproc {i-th matrix singular} sing {()}
= {i-th matrix singular} write (i, "singular") {blocks postcond} corp
in (* overflow caused by compute aborts at least this block! %)
compute (A);
(3m,. @ = My) A (M) is i-th matrix)}
invert (A, A {Mo singular A MO is i-th matrix o i-th matrix singular});
Qm,.a = Mal) A (M is i-th matrix)}
{a is i-th inverse}
write (A)

ni {i-th inverse or singularity message printed}

e

AXIOMATIZATION OF DECLARATIONS AND AN ESCAPE CONSTRUCT 235

Appendix D. Summary of the rules for the escapes.

Consider the following abbreviations.

psem = proc {P} p(spec {f'}:tf {hyp h:th eiassem(i=1..n)}) {0}

e assem = escproc {E,} ei{(Yi)}

where £', h, ei distinct and the formal val parameters not free in Q and the
variables used globally by p free in psem,

esem = escproc {E} e {(y")}

initesem = escproc {true} e {(y")}.

Escape variable declaration:

Envle«e'] + esc e (val:ty) + initesem |~ {R[e«e']} stmnt {S[e«e'l]}

Env {R} new esc e (val:ty) in stmnt ni {s}
where e' not free in Env,e.

Procedure declaration:

(Envp+p']-[escproc] + psem) [£<£"] + var £:tf + h:th + e;assem(i=1..n)
= {prg,£'4£",£7} body {olf,£'«",£]}
Env[p+p'] + psem {R[p+p' I}stmnt {s[p+p']}

Env I~ {R} new proc p (spec:tf) = spec f:tf in body corp in stmnt ni {s}
where p' not free in Env,p
and h,f" distinct and not free in Env,p,p',f.

Escape procedure definition:

(Env - [escproc el + esem)l[y«y"] + var y:ty —{E[y,y'<y",v1} body {sly.y'«y",y1}
Env - [escproc e] + esem —{R} stmnt {s}

Env i~ {R} def escproc e = val y in body corp in stmnt ni {s}
where y" not free in Env,y.

-Procedure call:

et psem, esc ei(val:tyi), escproc {Ei} ei{(yi)} € Env

and assume v, not free in I and a, then

Env I—Vyityi-(ﬂh:th.zi[ﬁ-a] AI) > ﬁi(i=1..n)

Env b~ {Jh:th.P{f«al A 1} p(a) {In:th.Qlf<«al A 1}
provided no actual var parameter free in I.

Escape procedure call:

Env + esc e(val:ty) + escproc {E} e {(y)} i {E[y«al} e(a) {false}.

i
I L=
1 i -
1
N i
1
|
\
\
|
|
i
4
1
Y
e
+
¥
I}
+
Ll
L]

i * F RS i’
k] d 1k |1

. ' v 1y A el

1 - Lo = Ty !

. = |:! ::_:J A y

i R ‘|l"| e

i =l v - W L:_E'[
~ — el %

) | NI
W P
Y .illd_,ll |‘. 1

- a3
Nl -
o -;’I_‘III y

