TECHNISCHE HOGESCHOOL TWENTE

(2]

MEMORANDUM NR. 178

EXCHANGING ROBUSTNESS OF A PROGRAM
FOR A RELAXATION OF ITS SPECIFICATION

C. BRON
M.M. FOKKINGA

SEPTEMBER 1977

Department of Applied Mathematics,
Twente University of Technology,

P.0. Box 217, Enschede, The Netherlands.

ONDERAFDELING DER TOEGEPASTE WISKUNDE

——

Contents

0. Introduction 1
1. Correctness and Robustness of Programs 3

2. Exchanging Robustness for Relaxation of the

Program Specification 8
3. A Realization: Restricting Abortions 11
4. Abstract Semantics of Restriction of Abortions 13
5. Using rab's as a normal control structure 16
6. Formal Verification of Robustness of Rab-free Programs 19
7. Passing Restrictions of Abortions as Parameter 20
8. Conclusion 21

References 23
Abstract

This paper motivates a programming concept which realizes the exchange
of some robustness of a correct program part for a relaxation of its
specification. The technical tool proposed restricts program abortions
to a specified part of the program only, so that the execution of that
part can - from the outside - not be distinguished from normal
termination. The abstract (= axiomatic) semantics closely reflect

the intuitive appeal of the construct. The tool is powerful in

the sense that it provides a means to restrict abortions to program

parts which may be unknown at the site where the abortion has been

"programmed" .

0 Introduction

There is a general understanding that in program composition the
pProgrammer's restriction to control structures which have simple
semantic properties is of beneficial value to his product, the
program. Thus one consideres the goto harmful, Dijkstra (68). Yet
there is clearly a need for abnormal flow of control, whenever in the
course of a computation conditions arise due to the failure of the

input to meet the assumptions on which the program is based.

In this paper we express our views on the intrinsic needs for some

form of abnormal flow of control and, carefully avoiding to introduce
just another control structure, we propose a programming concept with
strikingly simple Hoare(69)-like axiomatic semantics. In addition

to what has been said in the abstract, one of the attractive features

is the fact that programs written on rather strong input assumptions may
be adapted to a relaxation of these assumptions by slight additions to
to program-text which do not have any impact on the original textual

structure.

Our proposal constitutes a refinement of the most restrictive form of
abnormal flow of control: program abortion as implicitly provided by the
guarded commands of Dijkstra (75). It is far more powerfull than
restricted forms of goto, e.g. Wirth (71), in the sense that the user can

react to system detected error occurrences. It is not primarily intended

as a proposal for untimely termination of repetitive constructs,

like Zahn (74), Knuth (75) and Adams (77), although it may be

(mis-)used for that purpose.

The paper is organized as follows. In the section 1 we recall

the notion of correctness and briefly treat the important notion

of robustness and the programming methodology leading to robust

programs. Section 2 describes the abstract needs of the programming
concept; section 3 gives the operational realization and section 4

the abstract semantics. Section 5 and 6 mainly adress to the audience
interested in formal verification methods and may be skipped; we do

not introduce any formalism so that interested non-experts may

appreciate the main ideas as well. For completeness sake some remarks
about parametrization are made in section 7. Section 8 reviews the proposal
and briefly compares it with other proposals found in the literature.
Throughout the paper we will give examples that refer back to the program

of example 1.

(Note 0. e defining occurrence of a new notion is written in the
type font <defining occurrence>. Sometimes the definition is only

implicit in the context. End of note 0).

1 Correctness and Robustness of Programs

Recall the concept of total correctness:

A program part is <correct>, sometimes called totally correct,

w.r.t. <precondition> R and <post-condition> S, if its execution

in a state sat%sfying R leads to termination in a state satisfying S.
Correctness should not be confused with partial correctness:

A program part is <partially correct> w.r.t. R and S if its execution

in a state satisfying R either does not lead to termination or does

lead to termination in a state satisfying S.*)
We assume the reader familiar with a methodlogy for the construction
of correct programs, preferably using the alternative and repetitive
constructs of Dijkstra (75, 76):

if..fi and do..od.

An excellent treatment can be found in Dijkstra (76).

In this paper it is the alternative construct which plays a fundamental
role, the reason being its potential cause of abortion. For completeness
sake, we recall the semantics.
Consider
if B1 + stmntl [..0 Bn + stmntn fi.

IF (a) stmnt? is correct w.r.t. R A BZ and S, for all Z:I1..n

(b) R+ Bl V..V Bn
THEN the whole construct is correct w.r.t. R and S.
Operationally: upon execution of the alternative construct it is
required that at least one of the guards BZ is true, otherwise program
execution will be aborted; one of the statements stmntZ whose guard

BZ is true, is nondeterministically selected and executed.

(Example 1. Cluster Counting Program CCP.
The program given below will be frequently referred to in the sequel.
We first define some notions; they apply to strings of parentheses

(opening par'('and closing par')') only. In extended BNF, where *

*) A partially correct program may have false as its postcondition;

this implies that the program will not terminate.

- == =y

denotes repetition of zero or more times, we define
<cluster>::=(<c1uster>*)
<extensible>::=<cluster>* | <cluster>*(<extensible>
So a nonempty (sub)string S is a cluster iff for each initial proper
substring of S the number of opening par's is greater than the
number of closing par's, whereas these numbers are equal for the
whole string §.Further, a possibly empty string is extensible iff
addition of zero or more closing pars to the right yields a
sequence of clusters. By <the clusters in an extensible string>
we mean, as the definition of extensibility suggests, those clusters
in the string before the first non-matéched opening par which are not

contained in another cluster.

Now let Azgffgxfl..loo] gf.character be a non-assignable array of
characters and m:integer a non-assignable integer and suppose
a program is required which on precondition {0 < m < 100 A Al1..m]
contains parentheses only and is extensible} has to establish postcondition
{number of clusters in A[1..m] has been printed}. (What is initially
true about 4 and m remains so, because they are constants. Throughout
the paper we mention such invariantly true assertions only explicitly
in.the_precondition.) The following program fulfils the specification:
prelude var ¢, open, close, clus:integer
begin %, open, close, clus:=0,0,0,0;
do i#m »> T:=i+1;
if ALZ]="(' + open:=open+1
O ALZ1=')* + close:=close+1;
if open=close + clus := clus+1

0 open>close + skip

£i
£1
od;
print(clus)

end.
The correctness may be verfied using invariant relation {072 <mnaAlL..2]
contains clus clusters and needs (open—close) closing parentheses for

extension} and variant function (m-7). End of example 1).

Less known than the notion of correctness is the notion of robustness,
introduced by Dijkstra (76) only informally:
A program part is <robust in> a <robustness condition> R if

its execution in a state satisfying R leads to abortion.

Note that robustness in R implies robustness in R' if R' -+ R, and
robustness in both R and R' implies robustness in R V R'.

Further, robustness of a procedure carries over to each call.

When - due to "external accidents", - a3 program is executed

in a state not satisfying the precondition, abortion is to be preferred,
as a kind of alarm, over termination in a state hot satisfying the
expected postcondition. Note that in general one can hardly require the
precondition to be checked before execution of the program, because
more often than not this would require a sort of pre-execution of at
least some part of the program. Thus préferably a program is robust

in that part*) of the negation of its precondition which leads to
"wrong" termination.

(Example 2. CCP is robust in {0 £ m < 100 A A[1..m] either contains
not only parentheses or is not extensible}. So "erroneous" input,
provided 0 s m £ 100, does not give erroneous output: abortion will take
place in stead.

Example 3. Assuming that the array selection A[Z] is robust in

{EQE(l < 7 <£100)}, cCP is also robust in {EEEXO <m< 100)}.

End of examples 2 and 3).

The implication on conditions, or equivalently inclusion on sets, induces
a partial order on robustness: the weaker (i.e. less restrictive) the
robustness condition, the more robust the program is, as more initial
states lead to abortion. Robust programs are obtained by choosing the
guards of an alternative construct as strong as possible. Indeed,

one may weaken the robustness condition (BI v..V Bn) of an alternative
construct if Bl + stmntl []..00 Bn + stmntn fi by strenthening the guards
BZ whereas - assuming the validity of the precondition - they yet remain
equivalent. Fortunately this way of program construction is quite
harmoneous with the overall goal of structured programming in the sense

.that as much as possible is clear by local inspection of the text: a

*) This part is the negation of the precondition iff the precondition

happens to be the weakest one w.r.t. the given postcondition.

stronger guard B shows more than a weaker one B', which happens to
be equivalent to B only on account of the context.

(Example 4. Replacing A[Z] = "(' by A[Z]%')' diminishes both the
robustness and the clarity of CCP without disturbing the correctness

and correctness proof. End of example 4).

Thus alternative constructs may check the validity of essential parts
of the precondition and cause abortion if invalidity is detected. For
future use we allow alternative constructs to be optionally suffixed
with an identifier, the <robustness identification>, to denote the
associated robustness condition*). Such use of a robustness
identification is termed a <rob-identification>. Distinct constructs
need not be distinctly rob-identified if both check the same condition.

Constructs not explicitly rob-identified are assumed to be

rob-identified “hy default" by the standard robustness identi-

fication abort, short for"a bit of robustness transmitted?

(Example 5. In CCP both fi's could be identified by incorrect—input;

more refined identifications might read non—par for the outer fi and

non—ext for the inner one. This latter program will be referred to as

CCP'. End of example 5).

The introduction of rob-identifications suggest a refined notion of
robustness. We redefine
A program part is <robust in> (id, R) if its execution in a
state satisfying the <robustness condition> R leads to abortion
due to the execution of an alternative construct rob-identified
by the robustness identification id.
So, for not rob-identified program parts, robustness in R is robustness
in (abort, R).
(Example 6. CCP' is robust in (nompar, {0 <m < 100 A A[1..m] does
not contain parentheses only but its initial part up to the first
non~parenthesis is extensible}). CCP' is also robust in (nonext,

{o sm < 100 A an initial part of A[1..m], containing parentheses only,

*) At this point one may imagine that the robustness identification
is part of the errormessage which will be given when program abortion

occurs.

is nonextensiblel). End of example 6).

(Note 1. Due to the nondeterminism it may be impossible to assert
any particular robustness for a correct program, whereas without
rob-identifications it is non-trivially robust. For example, the
following program is correct w.r.t. pre x = 0 and post x = 0
and - without identifications - robust in (abort, x # 0).
It is however neither robust in wrongxl nor in wrongx2:

if true -+ if x # 0 - skip fi wrongxl

O true » if x # 0 + skip fi wrongx2

fi
Thus the formalism for robustness forces alternative constructs,
which are nondeterministically treated alike, to be rob-identified
alike as well. End of note 1). :
(Note 2. The kind of alarm provided for by the do-od construct is
nontermination: assuming that A[Z] yields an opening parenthesis for
all i, an initial state satisfying m < 0 leads to nontermination!
Here, the methodology is to choose the guards as weak as possible:
in CCP the guard reads 7 # m, which is weaker than 7 < m. Indeed,
2 < m would not lead to nontermination. Hehner (76) shows that the
use of "recursive refinement" in stead of repetition delivers - o.a. - -

robustness in stead of non-termination. End of note 2).

This completes our treatment of the notion of, and methodology leading

to robust programs.

2__Exchanging Robustness for Relaxation of the Program Specification

In this section we decribe the need and motivation and some requirements
for a programming concept. A realization will be proposed in the next

section.

Once a satisfactory and correct program has been written, it seems yet
quite natural to make another step in the development of the program:
oneé may want to exchange some robustness for a relaxation of the
correctness specification. For instance, in stead of some robustness
One may prefer an error message to be printed, followed by termination
of the program. Thus the original program specification, say (R,S),
has been relaxed into (R V R', S v §') where R' is a robustness condition
of the original program and S' asserts that the error message has been
printed.

(Ebample 7. We may wish to relax the program specification of ccp into
precondition {0 < m < 100} anc postcondition {(A[l..m] both contains
parentheses only and is extensible and its number of clusters has been
printed) or (otherwise, "A[1..m] doesnot contain parentheses only or

is not extensible" has been printed)}. End of example 7).

This holds even for parts of a program: one may prefer, if a program

part happens to be invoked when a robustness condition prevails, in

stead of robustness to be induced to the whole program, the part to

be terminated under establishment of a suitable, relaxed, postcondition.
One may prefer so if the context is rather independent of the postcondition
established by that program part. The whole program is made more useful in
the sense that more initial states lead to -suitable - termination.
(Ebample 8. The relaxation of example 7 is equally well desirable if

CCP is used by a larger program which merely processes a series of

array's A and integers m.

Example 9. If the context of CCP does not allow the condition {A[1..m]
does not contain parentheses only} to be part of a relaxed postcondition,
we still may desire the relaxed precondition {0 < m < 100 A All..m]
contains parentheses only} and postcondition {(4A[1..m] is extensible

and its number of clusters has been printed) or (otherwise, both

"A[1..m] non-extensible" and the greatest ¢, for which A[1..7] is

extensible, have been printed)}. End of examples 8 and 9).

Note that one must be free to choose the program part so large as

to have a weak enough postcondition to allow for a relaxation without
disturbing the correctness proof in which it has to fit.

(Example 10. Addition of “A[Z1 # '('or')' - skip" to the outer
alternative construct in CCP does exchange robustness of that very
construct for a relaxation of its correctness specification, but

the relaxed postcondition does not fit in the context. (The addition
modifies rather than relaxes the program (specification)). End of

example 10).

We consider it essential that “system generated" robustness be

treated on equal footing with "programmed" one. On the one hand,

each system generated action during the execution of a program can

be considered as a procedure ultimately invoked from within the program.
Fortunately, robustness of the body of a procedure carries over to
each call. So the exchange of robustness of a program part indeed
affects as well the robustness induced by the system. Typical robust-
ness identifications we think of are: overflow, index-out-of-bounds,
attempt-to-read-beyond-end—of-file, singularity (in a library procedure
for matrix inversion). On the other hand, the system part invoking the
user program may be considered to exchange all robustness for an
extreme relaxation of the program specification: the relaxed precondition
is true and the relaxed postcondition merely asserts that the output
and/or an appropriate error message (including a dump of the stack)
have been sent to the printing device. Indeed, for the remainder of the
system program - which takes care of finalizations like closing files
and deallocating resources and so on - it is irrelevant what condition
has been established by the user program. There seems, moreover, no
distinction reasonable for the system in the way it should exchange the
robustness in the various identifications invented by the programmer.
Hence, user identified robustness may become evident to the system as
robustness in, say, the single standard identification abort.

(Example 11. For CCP as incremented in example 9 it may be left to the
calling environment how and of what program part - if any and of which

system part otherwise -~ to exchange the robustness in non=par

(resp. abort) and index-out-of-bounds. End of example 11).

10.

Preferably, of course, the incremental step (of exchanging robustness
for a relaxation) should in no way influence the original structure
of the program, so that it brings about additions to rather than
alterations of the original program text, the original documentation

and original correctness proof.

11.

3 A Realization: Restricting Abortions

We give a realization of the bProgramming concept described in

section 2.

Consider a program part whose robustness, in (id,R') say, has
to be exchanged for the relaxation: of the correctness specification
(R,S) into (R V R', SV S') for a suitable S'. Obviously:
(1) the exchange of robustness must be realized by restricting the
abortions, caused from within the execution of the program part and
"rob-identified" by id, to just that very program part, so that -
as seen from the outside - it is just terminated, and
(2) the establishment of S' must be realized by the execution of
some <terminating statements>, term say.
Syntactically we propose:
(3) without loss of generality the program part to be a block and
(4) to indicate the <restriction of abortions> by the following
addition to the prelude of the block:

rab id by term bar
to be termed a <rab-definition>.
Further we define:
(5) in order to make valuable errormessages and terminating actions
possible (cfr. the i to be printed in example 9 and the dump of the
stack in section 3) the evaluation of term to take place in the
environment (= collection of declared objects) valid for the statement
part of the block and
(6) the abortions caused from within the execution of term (and not
restricted by the interior of term itself) to be restricted - if
at all - by the restrictions of abortions valid when the block is to
be executed. (This decision eliminates recursion but has been motivated
by the wish to keep the abstract semantics simple, see section 4 and
note 4 in section 5).
We complete the realization proposal by:
(7) requiring the robustness identifications to be declared, say in
the format: EEQ id, so that the scope of this <£i§fdeclaration> contains
all the rab-definitions and rob-identifications of id, and
(8) letting the declaration also mean the implicit definition rab id

by if false -+ skip fi bar, thus causing abortions rob-identified by

12.

the standard default identification abort for any abortion identified
by id which will not be restricted by the programmer.
(Example 12. Examples 11 and 9 may be realized by an addition to the
prelude of CCP', so that it reads:
prelude var %, open, close, clus: integer; rid non—ext;

rab non—ext by print ("A[1..m] non-extensible", i-1) bar.
If gig_non-par had been added to the prelude too, and no Eggfdefinition,
then the context could not restrict those additions: they would cause

program abortion (identified by abort). End of example 12).

Note that abortions caused from within a procedure body (or standard
operation} will be restricted by the rab-definitions surrounding the

site of call rather than the site of declaration.

13.

4 Abstract Semantics of Restriction of Abortions

More important than (or as important as) the precise operational
definition are the schemes of reasoning involved in the incremental
step of the program development. They need to specify the correctness
and robustness of an incremented block in terms of the correctness and

robustness of the original block and the terminating statements.

Evidently, however the robustness assertions as defined so far are
insufficient, due to the inability to express in what state the
abortion will be caused and consequently in what state the terminating
statements will be executed. So we refine once more the notion of
robustness:
A program part is <robust in> (id, R, A) if its execution in an
initial state satisfying the robustness condition R leads to
abortion due to the execution of an alternative construct,
rob-identified by id, in a state satisfying the <abortion condition>

A.

The condition A should be interpreted in the environment valid

for the statement part of the block, if the program part happens

to be a block. (Or equivalently, by convention the robustness for

the statement part of a block is said to hold for the block).
Note that abortion condition EEEg_always suffices; in general robustness
in (id, R, A) implies robustness in (id, R', A') if R' - R and A + A'.
(Example 13. An abortion condition for the robustness in non—ext as
asserted in example 6, is {4[1..7-1] is extensible but A[1..7]is not}.
End of example 13).

For the well-known programming concepts there exist intuitively appealing
formal methods to verify robustness assertions, similar in nature to
formal methods for the verification of correctness. In section 6 we
will describe such methods. For the time being we assume that

satisfactory methods exist.

Now we turn to the semantics of restricting abortions. Consider a
block to be incremented by the addition of rab id by term bar to its

prelude.

14.

The rule for correctness has already been suggested in the motivation
of the concept:
IF (a) the block has been proved correct w.r.t. Rl and S1 and

(b) the block is robust in (id, R2, A) and

(¢) term is correct w.r.t. A and S2,
THEN the incremented block is correct w.r.t. Rl V R2 and S1 V B2.
Second, for the robustness identification id we have
IF (a) the block is robust in (id, R, A') and

(b) term is robust in (id, A', A),
THEN the incremented block is robust in (id, R, .3).
Third, for any identification id' distinct from id,
IF (a) block is robust in (id', Rl, B) and

(b) block is robust in (id, R2, A) and

(c) term is robust in (id', A, B),
THEN the incremented block is robust in (id', Rl V R2, B).
(Example 14. Using the robustness assertion as completed in example 13,
it is almost trivial to prove that the incremental step of example 12
indeed yields a program satisfying the relaxed specification of example 11.
The robustness assertions for non-par and index—out-of-bounds will not

be affected by the incrementation. End of example 14).

Now we motivate clause (6) of the operational definition. Consider a
block, to be incremented by the addition of rab id by term bar to its
prelude. Two alternatives to (6), which for appropriate reasons might

be judged simpler, suggest themselves: the abortions caused from within
term are restricted - if at all - either

(6') by the rab's valid when the statement part of the block is to be
executed (so that, by extending the notion of <environment> to contain
as well the valid rab's, clause (5) alone would suffice), or

(6") by the EEE'S valid when the abortion, identified by id, is caused
from within the statement part (so that both for procedures and for
EEEJS' the Engdefinitions surrounding the site of invocation restrict
the abortions caused from within the bodies and terminating statements).
Rather unconsciously clause (6") has been chosen in our first design,
Bron et al (76). The abstract semantics however are far more complicated
and close inspection revealed a serious flaw, treated in fuller extent
in Fokkinga (77) and essentially due to the possibility that restricting
abortions to some block B would possibly restrict the abortions to an

inner block of B; this is clearly not what we intuitively wanted!

15.

In contrast to (), clause (') prescribes the Eggfs to be evaluated
(mutually) recursively. This does not only give rise to additional constraint:
about a variant function in order to guarantee boundedness of recursion -
just as in the case of (mutual) recursive procedures - but also to a
relaxation, in the first and third rule, of the abortion condition

A of the block into A ¥ A', with the additional premise that term is

robust in (id, A', A V A');the second rule however would be simplified:

the incremented block would be no longer robust in id. We consider

these modifications too inattractive, but the decision might be left

open to discussion.

l6.

5 Using rab's as a normal control structure

In stead of writing robust programs which in an incremental step are
extended by the addition of rab-definitions, one might wish to employ
the restrictions of abortions while constructing the program. (An
explicit abort-statement is available: if fi always aborts program
execution because there does not exist a true guard). We give the

abstract semantics for this approach.

First of all, it should be noted that the specification for which an
inner program part has to be designed, is already the relaxed one
and that the programmer is allowed to program abortions, assuming
that these will be restricted by the context (at the site of execution).
So apparently program parts are intended to be liberally correct
rather than correct:
A program part is <liberally correct> w.r.t. R and S if its
execution in a state satisfying R either leads to abortion or
leads to termination in a state satisfying S.
The notion of liberal correctness should not be confused with either
correctness or partial correctness.
(Example 15. Because CCP is robust in the negation of its original
precondition, it is liberally correct w.r.t. true and the original

postcondition. End of example 15).

Rather than to give a specific formalism for proving liberal
correctness, we give the way any existing formalism for proving
correctness should be modified for the present purpose. The modification
for the formalism is described below; the interpretation of formulae

has to be modified so that what originally did express correctness,

does express liberal correctness now.

First, we adapt the language of the proof system. On the one hand,

just like the .assumed existence of formulae expressing <E£9§/£EET
specifications>, one should introduce formulae expressing
<rab-specifications>: these formulae merely give an <abortion condition>
on which it is allowed to invoke an abortion for the robustness
identification under consideration. On the other hand, we need to

extend the proc/fun-specifications so that they also may express some

17

<assumed rab-specifications?: in this way abortions invoked from
within a proc/fun-body will be modelled as implicit parameters, see

below.

Second, we adapt the rules of the proof system. Obviously, we need

one new rule:

Rab-definition (a) A rab-specification (is an abstraction from the

definition and) is verified by showing that the terminating statements,
with the abortion condition of the specification as precondition, estaklish
the block's postcondition. Within this verification the rab-specifications
allowed to be used are those (assumed to be) valid for the block. (b) A
verified rab-specification is valid in the normal, textual, scope

of the definition (; redefinitions for the same identification cause

a hole in the scope).

Three rules of the original proof system need be modified:

Proc/fun-declaration. A specification is verified (in the normal way)

discharging however all rab-specifications valid at the site of
declaration and assuming to be valid instead, the assumed rab-
specifications as indicated in the Broc/fun-specification.

Proc/fun-call. In addition (to what the original formalism says) it is

required to verify the assumed rab-specifications from the rab-
specifications currently (assumed to be) valid. This verification

requires to show that the abortion condition of the latter rab-
specificationimplies the abortion condition of the former rab-specification.

Alternative construct. In contrast (to what the original formalism says)

it is now not required that at least one of the guards is true, but it is
required that the falsity of all guards implies the truth of the abortion
condition of the rab-specification currently (assumed to be) valid.

All other rules remain unchanged.

(Note 3. The above modification is equally well applicable to any
formalism for proving partial correctness. The reader may consult

Fokkinga (77) for a detailed presentation. End of note 3).

Although parts of the program have to be proved liberally correct,

the whole program is proved correct if all rab-specifications are
assumed to have false as abortion condition. If however those abortion
conditions are assumed to be true - as actually validated by the

system -, then the whole program is proved liberally correct only.

18.

(Note 4. Because in the approach of liberal correctness the correctness
and robustness assertions are merged into one assertion, the complications
described in the motivation of clause (6) of the operational definitions
disappear when alternative (6') is chosen and consequently rab's are

evaluated recursively. End of note 4).

19.

6 Formal Verification of Robustness of Rab-free Programs

Because we are not interested in formalisms as such but only in the
existence of intuitively appealing methods, we will employ the

formalism for proving liberal correctness for convenience.

We describe first how separate correctness and robustness specifications
for a procedure should be translated into a single liberal correctness
specification and secondly how robustness of a program part - free of
procedure declarations - should be verified in the formalism for
liberal correctness. Thus one should verify robustness of procedures

separately.

Consider a procedure(body), if it is correct w.r.t. R and S and
robust in (id, R', A), then it is liberal correct w.r.t. R V R'.
and S, assuming a rab-specification for id, which has A as abortion

condition.

Now consider a program part to have been proved robust in

(id, R, A). If the program part is proved to be liberally correct
w.r.t. R and false, assuming a rab-specification for id which has

A as abortion condition and assuming further only rab-specifications
with false as abortion condition, then the robustness has been verified.
Indeed, postcondition false expresses that the program part can impossibly
terminate and the only abortions allowed are those identified by id and
taking place in a state satisfying condition A.

(Example 16. The robustness as completed in example 13 may be verified
using the invariant relation {0 < Z < m A A[1..7] is extensible and
needs (open—close) closing parentheses for extension}. Indeed, the
falsity of both open = close and open > close implies the abortion
condition. Further, the invariant relation together with 7 = m (after
the gg) imply false, because A1, .m] is not extensible on account of

the robustness condition. End of example 16).

It is beyond the scope of this paper to treat topics like the soundness
of the formalism described in section 5 and 6, the completeness and

the conditions under which they are equivalent and so on.

20.

7 _Passing Restrictions of Abortions as Parameters

Once restricting abortions is used as a normal control structure, we

may consider parametrization of procedures by robustness identifications.

First of all it is necessary - in order to control the construction of
(liberally). correct programs and not to invalidate the previously given
abstract semantics! - that within procedures distinct (formal and global)
identifiers denote distinct (actual) robustness identifications. (The

same applies to variables as well!!). Such distinctness may be obtained
either by undesirable syntax constraints or by considering the formal
pParameter specification of an robustness identification f as the declaration
rid £ (thus creating a new identity) for which the "default" rab-definition is

rab £ EX.EE.Ei.a bar, where a stands for the actual robustness identification.

Second we may choose to define the use in rob-~identifications to be the only
option for such parameters, or we may as well allow the option to give
rab-definitions for such parameters. The latter case corresponds to the
PASCAL and Algol 60 value parameter transfer, the former case to the original
PASCAL constant parameter transfer.

The value-like parameter transfer can very easily be realized by the constant-
like parameter transfer; the converse does not hold - in languages such as
Algol 60 and PASCAL. As an example, the standard robustness identification
abort may be considered to be passed to the user program with the only option

to use it in rob-identifications.

2L,

8 Conclusion

Based upon abstract, intrinsic needs we have described a pProgramming
concept. It is applicable to correct programs, exchanges robustness

for a relaxation of the brogram specification and treats all robustness
on the same footing, disregarding the origin (which may lay in the
system, a library procedure or the program itself). The operational tool
proposed has the attractive feature that it merely brings about additions
to the program text without any alteration, so that the original program
documentation and correctness proof are not affected but only need be

extended.

All restricted forms of the goto, as mentioned in the introduction, are
unable to deal with system generated errors and even the too unrestricted
label variables of Algol 68 and PL/I are unpractical to do so. The

Jumpout facility of Pop-2, Burstall (71), and the J-operator of Landin (66)
require the presence of procedure variables and have a rather strange

(standard) function for what we have made into a syntactic construct.

Much of the work done on exception handling does not (only) deal with
"fatal errors" -~ after which the current computation can not be continued -
but deal (in the first pPlace) with "relatively infrequent events" so that
continuation is possible, be it after some "exception handling”. In our
opinion other control structures, such as procedure parameters or may be
new ones, should solve the (abnormal?) flow of control related to
"exceptional events"; they should not be mixed up with the handling of
"fatal errors". E.qg. Levin (77) proposes to return control after execution
of the exception handler to the place of invocation; Goodenough (75) 's
proposal and the PL/I-ON construct have in addition the option to abort
the current computation. Our proposal might be viewed as a deliberate

simplification of the latter two constructs.

Most closely related are the exit-facility of Jones (75) - it may be
considered as a single standard robustness identification - and the signal-
enable facility of BLISS 11, Dec (74), - corresponding to rob-identifications
and rab-definitions respectively -. But these and all of the above require
to take care of the exceptional cases while contructing the program, thus

lacking a separation of concern as made possible by the proposed exchange

of robustness.

22,

So we hope to have made a proposal in which a remaining troublespot in
the area of control structures has fully been brought on the level of

a calculus for the derivation of correct programs.

23,

REFERENCES

Adams, J.M. (1977); A General Verifiable Iterative Control Structure.
IEEE SE-3 (Marxch 77)2, 144-150.

Bron, C. & Fokkinga, M.M. & de Haas, A.C.M. (1976); A proposal for
dealing with abnormal termination of programs. TW-Memo 150
(nov. 1976). Twente University of Technology, Enschede, Netherlands.

Burstall, L.M. & Collins, J.S. & Popplestone, R.J. (eds.) (1971);
Programming in POP-2. Edinburg, University Press (1971).

DEC, Digital Equipment Corporation (1974); BLISS-11 Programmer's Manual.
Maynard, Mass., 1974.

Dijkstra, E.W. (1968); Goto-statement Considered Harmful. CaCcM 1
(1968) 3, 147-148.

Dijkstra, E.W. (1975); Guarded Commands, Nondeterminacy and Formal
Derivation of Programs. CACM 18 (1975) 453-458.

Dijkstra, E.W. (1976); A Discipline of Programming. Prentice-Hall.

New Jersey (1976).

Fokkinga, M.M. (1977); Axiomatization of Declarations and the Formal
Treatment of an Escape Construct,To appear in Proceedings IFIP TC-2
Working Conference on Formal Description of Programming.Concepts
(August 1-5, 1977, St. Andrews, New Brunswick, Canada). (Ed.

E.J. Neuhold) North Holland Publ. Co.

Goodenough, J.B. (1975); Exception-Handling: Issues and Proposed
Notation. CACM 18 (1975) 683-696.

Hehner, E.C.R. (1976); do considered gg; A Contribution to the Programming
Calculus. Tech. Rep. CSRG-75 (1976) University of Toronto.

Hoare, C.A.R. (1969); An Axiomatic Basis of Computer Programming.

CACM 12 (1969) 576-580, 583, L
Jones, C.B. (12975); Formal Definition in Program Development.In Programming
Methodology, Lect. Notes in Comp. Sc. 23 (1975) 387-443 (Springer

Verlag).

Knuth, D.E. (1974); Structured Programming with goto statements.

ACM Computing Surveys 6 (1974) 4, 261-302.

24. i

Levin, R. (1977); Program Structures for Exceptional Condition Handling, ’

Ph.D. Thesis, Dept. of Comp. Sc. Carnegie~Mellon Univ., Pittburgh
Pennsylvania, 1977.

Wirth, N. (1971); The Programming Language Pascal. Acta Inf 1 (1971) 35-63|

Zahn, C.T. (1974); A Control Statement for natural top~-down structured

Programming. Proc. Symp. on Programming (Paris, France 1974) Lect.
Notes in Comp. Sc. 19 (1974).

