=

TECHNISCHE HOGESCHOOL TWENTE

MEMORANDUM NR. 150

A PROPOSAL FOR DEALING WITH

ABNORMAL TERMLNATION OF
PROGRAMS.

C. BRON
M.M. FOKKINGA
A.C.M. DE HAAS

NOVEMBER 1976

Department of Applicd Mathematics,
Twente University of Technology,

P.0. Box 217, Enschede, The Netherlands.

ONDERAFDELING DER TOEGEPASTE WISKUNDE

Contents

blz
0. Abstract. n
1. Definition of "abnormal termination. 0
2. The concept of partial termination. 2
3. Requirements for a descriptive mechanism. 3
4. A proposal for an escape mechanism. 5
5. Formal semantics of the escape mechanism. 6
6. Implementational considerations. 9
7. Examples. 11
8. Conclusion. 14
9. References. 15

Abstract

In this paper a proposal is made for a mechanism to control the
abnormal termination of the execution of prcgrams or parts of
programs. The notational conventions introduced are such that
programs in which the possibility of abnormal termination is taken
into account can be derived from the original programs withcout
disrupting the original program's structure.

The mechanism 1s powerful in the sense that it allows the termination
of blocks which are unknewn to the Plocks from within which this
termination is cauced. The formal semantics closely reflect the
intuitive appeal of the construct and are similar in nature to the

semantics of procedure call.

There 1s a general underscanding that in program-composition the
programmexr's restriction to control-structures which have simple

semantic properties is of benericial value to the prougrammer's

product., i.e. his program.
Assuming - for the sake of the argument - the programs that we
have in mind, to be sermantically correct, then we still have 1c
consider their correctness in terms of assertions about the inputs
that may eventually be supplied. If some input does not fulfill
the assertions we may either expect undefined behaviour of the program
under execution, or preferably we would like the program to generate
at least a warning about the incorrect input, after which it may
terminate in - what we will call - an abnormal way.
Dijkstra terms programs which check the validity of the (input)
assumptions - even if they are explicitly stated in the program-
specification: robust programs, and he associates a conditional
statement, composed of guarded commands with such robustness. 1 1]
Preferably then, our programs should be of the form:

determine validity of input assumptions;

if assumptions fulfilled

then actual program else generate warning

fi
More often than not, it is the case that checking of the input
assumption requires a sort of pre-execution of at least part of the
program, which will subsequently have to be re—-executed on
establishment of the validity of the assumptions. Therefore it is
practice to have a means of program termination that can be invoked
even if execution has not reached the last statement of the
program.
For the conditional statement just mentioned it is postulated that
if all the guards are false, the execution of the program which
contains the conditional statement is "aborted". And such an abortion
may be invoked from any location in the program text.
Two typical examples of such an untimely termination could be:
1) a compiler reaching the end of the source file before it has

compiled a complete program
2) a numerical program that establishes the singularity of a matrix
which somehow has been derived from the input, after an attempt

at inversion. Further processing is now impossible.

It is the actions that take place when in the course of processing
it is found out that the input-assumptions are not fulfilled, that
we will term:

"abnormal termination”

Partial termination

It seems unwise to consider abnormal termination of a program as

a kind of magic operation that "kills" programs in execution,

whilst in mid-air. After all, we may consider any user-program

as a procedure which - upon having been entered into the system -

is called from the operating system environment. Even if an
execution is terminated abnormally,we are aware that control is
returned to the calling environment, possibly leaving some indication
as to the way execution was terminated. The calling environment then
performs the necessary clean-up actions like the closing of files,
many of which it has to do regardless of whether abnormal termination
occurred or not. To put it in other words: for the calling
environment it is rather irrelevant to know whether the user program has
terminated normally or abnormally. This fact may, but does not need
to be, part of the interface between these two environments.

Also, this view makes clear that even the "abortion" of the execution
of a user-program, must be seen as a partial termination, i.e. the
termination of a program-component, which - seen from the inside -
appears to be "abnormal", but which - from the outside - cannot be
distinguished from a '"normal" termination.

We now stipulate that this view of partial termination is not only
valid at the interface between an operating system and a user-
program, but equally so at any interface between levels in a user

program.

To be more specific: it freguently occurs that a program is designed
to process a stream of data in which the outcomes of the processing
of the individual data-items are rather independent of one another.

(We will not attempt to define such independency in a formal way).

In processing such a stream of data we may either specify the input

assertions for the stream as a whole, or for each item of the stream

individually. In the former case we expect processing to be terminated
as soon as it is found out that the input assertions are not fulfilled.
In the latter case an item for which the assertions are not fulfilled
may be "processed symbolically". e.g. an error message is generated
and if necessary the item is "skipped". Clearly in the latter case we
expect abnormal termination to be restricted to the action "process

one item".

3. Requirements for a descriptive mechanism.

We set out to investigate a descriptive mechanism that would fulfill

the following requirements:

a) It should give the writer of a program explicit control over
the concept of "abnormal termination" .

b) It should be sufficiently restrictive in form and semantics that
it could not be considered as "just another control-structure".

c) It should allow for the termination of blocks from within blocks
that are non-local to the block being terminated.

d) It should allow for the treatment on equal footing of "errors"
which become manifest to the system-environment (e.g. overflow,
index out of bounds) and "errors" which are explicitly detected
in the user-written program text.

e) It should comply with the general principle of block-structured
programming languages that procedures can be written, using a
nomenclature which can be chosen independently from the choice in
other procedures with which they may co-operate.

f) (and this was our foremost goal)

It should be possible to write programs based on the input-
assertions, in which provisions for dealing with incorrect input

do not influence the structure of the original program. In other
words: program-specifications may be relaxed to cater for incorrect
input, by adding to the program text, instead of bringing about
alterations.

g) The semantics of the mechanism should be formalized and its
formalization should reflect the inherent simplicity, if the
mechanism is to be of practical use. (We take the simplicity of
the semantics of a programming construct as a measure for the ease
of its intuitive use).

h) In an implementation, the cost of catering for abnormal termination
must be located in those program-components where it is potentially
used, and should not range over - for instance - the cost of the

orocedure call/return mechanism.

i) The user of an escape mechanism should be made aware of the
concept of abnormal termination on the one hand, and his
obligation to specify the semantics of the block to be terminated

abnormally, on the other hand.

(We must confess that the latter two requirements showed up in the

course of our work, and had not been formulated beforehand .)

An evaluation of existing proposals in this field led to the conclusion
that no proposal met all of the above requirements. We will not
exhaustively mention all of the literature (for a fuller exposé the

reader is referred to [4 1), but just pick out a few -examples.

- The ALGOL 60 goto-statement certainly does not meet requirement b) .
Requirement c) could only be met by making affluent use of the label-
parameter mechanism, and even then it would not comply with d).

- The proposed and implemented exit-constructs in BLISS [7] do not restrict
themselves to "abnormal termination”. It appears that untimely
exit from a loop has been made a more central theme than termination
of a block. Requirements c) and d) are not-met.

- The mechanism which comes closest to our proposal is probably the PL/I
ON-construct, although that is not restricted to the termination of
blocks. One might make a restricted use of the construct, which
could then, on account of the possibility of redeclaration, be
compatible with e).

- The kind of control we have in mind can be made with a more general
concept of labels, as in ALGOL 68, where label-variables exist.
Construction of an exit-mechanism from this concept is, however,
rather clumsy. And again the label-mechanism is too unrestricted.
Furthermore ,the label-concept may well be hostile to h) (although
this point is of minor importance).

- Randell's recovery blocks [6] serve a different purpose. They
provide a form of reversability to program execution such that upon
malfunctioning of some kind, operations may be retried.

- Goodenough's proposals L 5 | come rather close to the current one,
but are rather baroque, at the same time violating criterion g). Since
he fails to define the scope of names that identify exceptions it

is not clear whether criterion e) is fulfilled. His examples mostly

illustrate an abuse of the control-structures he proposes, where
normal control would have sufficed. Furthermore, when in a
procedure R an exception is raised, and R was called by Q, and Q
was called by P, it is impossible to indicate the termination of P
on account of the exception in R, and therefore Goodenough's

proposal doesn't satisfy criterion c).

We define the environments that can be untimely terminated to be
blocks (in the usual sense). This is hardly a restriction since
small grains of program text can be made into blocks if necessary.

The obligation to do so is a consequence of requirement i).

A block is a candidate for untimely termination if - local to that

block - a so called escape procedure is declared.

An escape procedure can only be activated during the lifetime of the
block in which it is declared. 1If an escape procedure is activated,
the execution of its body replaces the execution of (the remainder

of) the block in which it was declared. The execution of the body

of the escape procedure takes place in the normal context of its
declaration.

Activation of an escape procedure may take place from within any
procedure which can be active during the lifetime of the block in
which the escape procedure is declared.

The correspondence between call and the called procedure is
established by matching identifiers. 1In order that this matching
process be uniquely defined we require the declaration of an escape
variable (that bears the same name as the escape procedure) in a
block that surrounds both the site of activation and the site of
declaration of the escape procedure.

We allow more than one escape-procedure to be bound to the same
escape variable, but this binding takes place dynamically, in a nested

fashion (viz. by processing of the declaration of the escape-procedure).

The escape procedure that will be activated is the one which has been
most recently bound to the escape variable.
If no escape procedure is bound to an escape variable we will interpret

activation of the escape variable as "program abortion”.

In other words: every escape variable will be initially bound to

a standard escape procedure declared outside the program. For system
defined error occurrences (such as overflow, reading beyond end of file,
etc.) we will assume standard escape variables with predefined names to
be declared at a level surrounding the program block.

Comparing this with the way in which standard procedures are treated,

we find that this proposal in no way interferes with the programmer's

freedom to introduce local names in a program.

The explicit introduction of escape variables makes the proposal
consistent with requirement e) of the previous chapter.

When an escape procedure is invoked, it may be supplied with

parameters, which must necessarily be input parameters (value parameters).
For each declared escape variable the structure of the parameter-list
must be fixed. Therefore, one might consider a declaration of an

escape variable together with its formal parameterlist.

There is no objection in having an escape-procedure invoking another
escape procedure. The first escape procedure that terminates

"normally" determines the block that is terminated abnormally.

In this section we will discuss in a rather informal way the formal

rules which are treated extensively in a separate publication [3 1.

We only intend to stress the similarities and differences with normal
procedures and to indicate the way in whiéh an informal correctness

proof should proceed. Hence we avoid formalization of any aspect not
characteristic of the escape mechanism. Thus we assume all declared
identifiers to be distinct - except for the escape procedure declarations -
and we assume the procedures to be parameterless. Further, the language
is supposed to be an ALGOL 60-like language, where each name should be
declared before it is used. We use the conventional formula {R} stmnt {S}
with the following interpretation: "if after execution of stmnt control
has returned and is about to execute the textually succeeding statement,
then S is true provided R is true before". Thus taking S - false

implies that control does not return (either because of nontermination

or because of abortion (= control does not return anywhere in stmnt)).

Let us now consider procedure declarations. Without the escape
mechanism we have the following rule:
in order to prove the behavior {R} proc p; body: restofblock {S}
one should (i) prove the correctness of restofblock, i.e.
{R} restofblock {S}, assuming some semantics of p, say
{p} proc p {Q}, and (ii) prove the assumption made on p from the body
i.e. {P} body {Q}, again assuming {P} proc p {Q} for the recursive
calls inside body.
Thus formally
(1) {P} proc p {Q} — {R} restofblock {s}
(ii) {P} proc p {Q} F— {P} body {Q}

{R} proc p; body; restofblock {S}

Now, when we allow escape procedures in the language, we should adapt the

rule in the following way.
In addition to what has been said above, we must explicitly assume
some semantics for every escape procedure in the body. These
assumptions then really belong to the semantics of p.

Thus formally

(1) {P} proc p with e, on E; (i = 1..n) {@} F— {R} restofblock {s}

(ii) {P} proc p {Q}, {E;} proc e, {false} (i = 1..n) F-{P} body {0}

{R} proc pi body; restofblock {s}
where Ei should not contain any variable local to body.
But for escape procedure declarations, there is one difference:
the postcondition of the procedure's semantics must be false and
the postcondition of the body must be the relaxed postcondition of the
block (thus guaranteeing that the block's postcondition holds when
control reaches it).
Formally
(1) {E} proc e with e, on E, (i = 1..n) {false}|—{R} restofblock {Sl}
(ii) {E} proc e {false}, {Ei} proc e, {false} (i = 1..n) l*-{E} body {52}

{R} escape procedure e; body; restofblock {S1 95_32}

where Ei should not contain any variable local to body.

Note that the semantics for escape procedures are just an instance

of a normal procedure's semantics.

Now, we consider procedure calls.

Without the escape mechanism in the language, we have the following rule.
upon precondition P the call certainly yields Q as postcondition -
provided {P} proc p {Q} holds - and moreover, if I doesn't contain
any variable used by p, then I clearly remains invariant and finally,
if h is not used by p we may assert that h is just some hypothetical
constant (occurring in P, Q and I in order to relate the initial and
final values of the variables used by p).

Formally
{r} proc p {Q} / {Ih. P A 1} call p {Th. 9 ~ I}
where h nor I do contain any variable used by p.

(For example, suppose {x = xO'A y = yo} proc p {y = x AN x = yo}

and X, r Y are not used by p, then by the last rule
{Sxo, Yor X=X Ay =y Ax =174 yos3}§_]_._l_p
{3x0, Yoo ¥ = X A x=y A x =17A y_ < 3}

so by the rule of consequence {x = 17 A y < 3} call p {y = 17a x < 3}.)

But when the semantics for p contains some assumptions about escape

procedures, then in addition:
these assumptions should be verified from the currently visible
Procedures (as introduced by the textually nearest declarations) and
of course, what is invariant over p may be added to the preconditions
of the escape procedures calls.

Formally
{P}p_gggpy_i_t_geiggzi (i =1..n) {Q}

{E; ~ 1} proc e, {falsel

{3nh. PAI} call p {In. g a1l

where I nor h do contain any variable used by p.
Note, p itself may be an escape procedure (and then Q = false). In order
to prove the n premises above the line from the currently available
semantics for the e, we have the following rule:

The (stronger) precondition we want to have for e, should imply the

(weaker) one we already have (from the nearest declaration), and

further, the assumptions on their escape procedures should be

verified in the same way. (Note that they may be recursively

dependent) .

Thus
{E.} proc e, with e, on E_, (j = 1..n;) {false} (i = 1..n)
i i ij =— "ij i

E'i}—Ei (i =1..n) , Eil—- I, (i=1..n)
{E'i} proc e, {falsel (i = 1..n)}—~{IiA Eij} proc eij{false}(j=1..ni,i=1..n)

1 i o=
{E i} proc e, {false} (i = 1..n)
where Ii does not contain any variable used by e .
In practice we do not expect escape procedures to be recursively dependent.

Finally, we consider escape variable declarations. For simplicity
we choose the following way

new e : escape; restofblock
should be replaced by

new e ; escape procedure e ; abort ; restofblock.

Then, new e has no semantic effect and further, abort is meant to be an
escape procedure call after which control does not return anywhere in the

user program. Thus it is axiomatized by {truel} abort {falsel.

Implementational Aspects

With regard to the implementation of escape variables and procedures we
note that the proposed mechanism has a great deal of similarity to
mechanisms for the handling of formal procedure parameters.

Here, the escape variable plays the role of the formal procedure
parameter, and the declaration of an escape procedure plays the role

of binding the actual procedure parameter to the formal one.

Unlike the procedure parameter mechanism, however, to each escape variable
a stack of escape procedures may be bound of which the top element is

the currently valid binding.

From the above we derive that an implementation of escape-procedures and
variables has to cater for the following:
- Escape variables will have to be initialized (upon entry into the block
in which they are declared) in such a way that the causing of an
escape will result in program aportion if no escape procedure has
been bound to the escape variable.
- For each declaration of an escape procedure a data-segment has to be
created, containing:

a) the environment and address of the escape procelure itself.

10

b) the return information of the block in which the escape procedure
is declared, since this will also function as the escape procedure's
return information.

c) the data for maintenance of the stack of bindings to the
corresponding escape variable.

- Upon normal exit from a block in which escape procedures have been
declared the bindings with regard to the corresponding escape
variables will have to be restored to their prior value

- causing of an escape proceeds in a manner entirely analogous to the
calling of a formal procedure: the escape variable is bound to the
escape procedure whose data-segment contains the environment and
address information

- upon exit from an escape procedure, several block-instances may have
to be terminated simultaneously. Re-establishing the return-context
implies that also the bindings of escape procedures to escape-
variables will have to be revised. (There is at least one escape-
variable for which this is the case). A convenient way to implement
this obligation is to have all escape procedure data segments chained
in reverse order of their creation. If the segments have been allocated
stackwise in a linear address space it is easy to break down that
chain up to the return-level.

As a matter of fact, the same mechanism can be employed for exit from

a block in which escape procedures have been declared. The fact

that here only one block is terminated is not of importance.

From the above considerations it will be clear that the runtime cost

incurred by the proposed escape mechanism is entirely located in:

- entry to a block in which an escape variable is declared (In practice
this will be the sort of block with a long lifetime)

- entry to, and exit from a block in which escape procedures have been
declared.

- the actual occurrence of an escape situation.

We therefore conclude that requirement h) of chapter 3 is indeed met by

the current proposal.

11

Examples of the use of escape procedures

Rather than to give a number of programmed examples of the use of

escape procedures we will discuss a few real-life situations in which the
proposed construct could play a vital role. Realistic examples in the
form of programs tend to become too large or too cluttered with details
as to be of illustrative value.

Two examples stem from concrete programming projects, viz. an

interactive LISP interpreter and an ALGOL compiler.

In the LISP interpreter we wanted to deal in a different manner with
two kinds of errors.

If during processing of a LISP-form a syntactic (or semantic) error was
detected, processing of the current form had to be abandoned, the
remainder of the form on the input or in an input buffer had to be
skipped, an error-message had to be generated and the interpreter
should return to a state in which it is ready to accept a new form.
(Note that the result of previous forms in which functions were defined
had to be preserved).

Therefore, local to the procedure READANDINTERPRETLISPFORM, an escape
procedure SYNTAXERROR must be declared which can be activated from
within any of the syntactic routines that are local in READANDINTERPRET-
LISPFORM.

If (even after garbage collection) list memory is exhausted, the LISP
processor may (after suitable clean-up actions) return to a state with an
empty list memory in which it is - once again - ready to accept input.
Therefore, local to the procedure ACCEPTLISPFORMS an escape procedure
MEMORYFULL must be declared. Upon termination of ACCEPTLISPFORMS it

may be decided to reinitialize the LISP-interpreter with an empty

list-memory.

Note that in both cases the form of control required could have been
obtained by means of a goto statement. This is not the case in the
following example:

In the THE-ALGOL Compiler | 2 | a number of tables have been declared
to store identifiers, block structure data, nesting of if-then-else
constructs and others. These tables were predeclared of a size

suitable to cater for the compilation of even large-sized programs,

12

but they might give rise to table overflow in certain pathological cases.
Rather than inserting size-checks on all operations that expanded

the contents of the tables, we resorted to the index-checking mechanism
which was a non-optional software feature (it might equally well have
been a hardware check like in the Burroughs B6700). To the user

it would be unpleasant to be confronted with the dynamic error message
"index out of range" if - to all his knowledge - his program wasn't

even in execution, but in the compilation phase. At the time, the problem
was overcome in a very ad-hoc way.

The possibility of linking an escape procedure to the standard escape
variable: "INDEXERROR" would have solved the problem in a natural

way. Furthermore, by declaring one or more instances of the escape
procedure on a sufficiently local level, the table responsible for the
overflow could have been pinpointed, after which a call on a more out-
ward declared escape procedure could still have caused termination of

the compilation. Analogously, the very same error caused in the indexing
of tables that were not supposed to give rise to overflow could have
been detected and reported as a "compiler error", by binding another
escape procedure to INDEXERROR at a suitable level.

Finally, and this remark seems almost superfluous, the proposed

escape mechanism exactly reflects what we have in mind when we say that
the execution of a program is aborted: i.e. the program block returns
control to the calling environment after having performed the necessary
actions. The standard escape procedure ABORT may not only generate

a message, but it is able to provide a stack dump of any form of
sophistication, since its body is executed before any environment is
terminated abnormally.

The last example below gives the text of a (more or less complete program)
in which standard escapes (= "system errors) are exploited in a

variety of ways. The example contains a proof in the formalism of [3 1.
Those not familiar with the formalism may erase everything within and
including the curly brackets { and }, and will still be able to

appreciate the remaining text.

We use the following notation:
The symbol "letrec" opens the scope of a set of declarations which
ranges over the declarations proper and the subsequent statement sequence

enclosed between brackets "in" and "ni" .

In this example we assume that the environment contains:

13

OF : esc

{x = xo] recip ({with esc OF on maxreal < 1/abs (x_)}
var res val x {hyp xo}) {res = l/xo}

The program then may read as follows

(* here is some innerblock of the program : *)
letrec var sing : esc;
proc {M = MO] invert ({with esc sing on M_ is singular}
-1
var I val M {hyp MO}) {r = M } =

letrec esc proc OF = (* just escape by calling *) sing

in "standard way of computing the inverse
of the initial M using the procedure recip
for reciprocal”
ni (x end of procedure invert x)
in (* stmnt part of the innerblock)
(* we want to print the inverses of a series of matrices to be read in J
for i := 1 ton

do letrec esc proc {MX is singular} sing {false} =

print ("matrix no", i, "is singular")
in read (MX);
{3IM . MX =M A MK =M1}
o o o]
invert ({the current environment, including MX = MO
implies {Mo is singular} sing {false} ged}
var Inv val MX)
-1
{IM . Inv=M A MX =M};
o 1. © o
{mmv = Mx "}
print (Inv)
ni {i-th inverse printed or singularity message printed}
gg.{the first n matrices have been processed}
(* here follows a computation which in no reasonable way can be
continued upon singularity =)

... invert ((» program abortion if M is singular *) I, M) ...

(* here follows a computation in which maxreal is interpreted as
infinity =)
read (x);

letrec esc proc OF = (invx := maxreal) in recip (invx,x) ni; ...

ni (x end of the innerblock *)

14

With regard to the above program the following remarks are in place:

1) within the body of invert the occurrence of overflow is
interpreted as singularity of the matrix to be inverted.

2) In the statement executed under control of the for-clause there is
a sensible reaction to the occurrence of a singular matrix
(detected in the course of invert). If, however, overflow would
be caused during the call of read or print, this is an unforeseen
event, and abortion will result.

3) In the (textually) last call of invert there is no escape action
defined with the occurrence of singularity.

4) In the next to last line of the example, a local decision is made
to replace the result of 1/x by maxreal if the division would cause

overflow.

Conclusion

We have suggested a language-mechanism for dealing with abnormal
situations during program execution. In chapter 3 we listed
requirements that - in our opinion - should be met by an acceptable
mechanism. These requirements were set out beforehand as a goal for
our investigation. Of the many proposals on this matter which have
been published in the literature we found none which satisfied all
criteria.

The current mechanism, however, does. The formal semantic rules reflect
the intuitive notion that the concept of escape procedures is hardly
more complex than the concept of procedures as such.

One of the most attractive features of the proposal is the fact that
programs written on rather strong input assumptions may be adapted to
a relaxation of these assumptions by the addition of escape procedures,

which in no way influence the textual structure of the original program.

9. References

[1] Dijkstra, E.W., Guarded Commands, Nondeterminary and Formal Derivation
of programs.

Comm. A.C.M. 18 (1975) 453-458.

[2] Dijkstra, E.W., The structure of the THE-multiprogramming System.
Comm. A.C.M. 11 (1968), 341-345.

[3] Fokkinga, M.M., Axiomatization of Declarations: Variables, Procedures,
Bscape-clauses.

Twente University of Technology, to be published.

(4] Haas, A.C.M. de, Escape Clauses in Programming Languages,
M.Sc. Thesis, Twente University of Technology,
Dept. of El Engineering (1976).

[5] Goodenough, J.B., Exception Handling: Issues and a Proposed Notation.
Comm. A.C.M. 18 (1975) 683-696.

[6] Randell, B., System Structure for Software Fault Tolerance,

Int. Conference on Reliable Software (Los Angeles 1975).

L7] wulsf, W.A., BLISS: A Language for Systems Programming.
Russell, D.B.,

Habermann, A.N.

Comm. A.C.M. 14 (1971) 788-790.

e

