TECHNISCHE HOGESCHOOL TWENTE

[25]

MEMORANDUM NR. 71.

COMMENTS ON A PAPER BY R. MILNER
CONCERNING THE SEMANTICS OF
PARALLELLISM,

DOOR

M. FOKKINGA

MAART 1975.

5
R

TR

A

e
iy

ONDERAFDELING DER TOEGEPASTE WISKUNDE

Abstract

In part | we present a representation of processes in the form

of drawings. The representation is less precise as the A- nota-

tion of Milner, but may sometimes provide better insight.

In part 2 we indicate a serious designmistake for the programming

language proposed by Milner. We propose another semantics for the
same syntax, but we are not satisfied with it.

Througlout this paper, the paper referred to is R Milners "an ap-

proach to the semantics of parallel programs'" [1]. We assume the

reader to be familiar with it.

Contents Page

Abstract.

Part 1 Another representation of processes 1
.1 Processes 1

.2 Operations on processes

.3 Some examples. 6
Part 2 Defect of the semantics 11

.1 The effect of binding, the defect of the semantics. 11

.2 More comments on the program. 14

.3 An attempt to repair the semantics. 16

References. 18

PART | Another representation of processes.

Although in general less precise, the representation sketched
below may give better insight in some cases. It gives a good
understanding of the behaviour of processes during "execution".
In fact the only way of binding processes without the help of
a A-calculus program on a computer is by the method proposed

here.

Processes
The space of processes P is P =V +L x V x P, where V is the
space of values, and L is the space of locations. In general a

process can be denoted by, e.g.

P = xv]. < llv], f]v], p2 > where
P, = xvz. < 12v2, f2v2, Py > where
Py = XV3. < 13v3, f3v3, P, > where
Py

which, when written on one line, is the same as

. . Av,. < ye o 22>,
Av] <11v], f]vl, sz < 12v2, f2v2, v3 13v3, f3v3 2
Note that 1i’ fi may depend on vj for §j <1i.

The new representation of this sample process is

P

NVi ?ﬁ where, as noted above, each 1i and fi
@ <y, &h may depend on the vj for j < i

21 moreover, each vj is to be read as a

!i-——o—isa—;ah bound variable with all beneath it as

its scope.

et e

When no confusion results we omit the subscripts of the variables;

in particular when the 1i and fi do not depend on any vj for j < 1.

Note that -Y—o—fvi
1lv

w\?\ﬂ- - ;}‘u'

1
!
'

Examples

QUOTE v = Atr< 1, v,

ID =Av. < 1, v, L >

ASS = Au. < B, !, Av.

corresponds to Av. < lv, fv,...

which corresponds to

Av. < 1lv, fv,... > (w)

and this may be simplified to

which corresponds to the triple
< lw, fw,==—=>

where troughout the dots w is
substituted for the free occurren-

ces of v.

1> is represented by

is represented by

0, V, Aw. < 1, v, 1>>>

by

.2 Operations on processes

The main reason for our representation being not fully formally
right is that in general the drawings can only be constructed
"at run time", i.e. "dynamical", whereas our notation suggests
that it is done "at compile time", i.e. "statically". As long as

our notation is read as a "statically formulated recipe for con-

structing the representation during runtime', the representation

presented here is allright. Actually, we will not use the nota-

tion in another sense than this one.

-2a According to the definition COND p q = Av. v/T >p!, q! the con-

ditional is represented by

\"———-owﬁ.uvvff(%mfmfl

The conditional composition is rather difficult to represent
statically. Here one really needs the simplifications due to an

application to a particular argument.

.2b EXTEND pf =)v. (pV)] =4 > f(pv)3(pV)2, < (pV)l, (pv)z,

EXTEND (pv)3f >

P 'QP‘
e (n.b. £ € P > P)
1, ‘l
b= i
T ""—0—”’”{%*”‘1’?' °
: +H E ’
| f ! '
[T e e 4

where it is understood that step N of the process p is the dyna-
mical first one which will send a message to the resultlocation .
In general, the link from p to fp', and even fp' itself, can only
be drawn when all the preceding steps of p are supplied with an
argument value.

Due to the link from p to fp' the two steps labelled N and a are

melted together into one step, which we will label by N ,a:

\4 . h;,f»—~__*‘w - Ay results in Y R aghv
N 1v a kw N,a khv
Hence the process resulting from EXTEND pf in the above example
equals
‘\\’ o
“-‘;‘.‘""")’ (Note that 'M"} = p' from p
! 3
——> :
. N0 has disappeared. It may however

be used in fp').

.2c Serial composition p * q = EXTEND p(kq) (where k = Ap.q.Xp'.q):

;

\)\r7:——> \-a'l——" J\——«.r—’
7:‘::” i - 377"?_’
o : = :

m«; ! :
§

Step N being the dynamical first one with location 1.

.2d Choise and parallel composition.
Representation by explicit mentioning of the conditional compo-
sitions and interrogations of wwill be very awkward. Therefore,

the "statically formulated recipe for runtime construction of

the picture representation' of the ||-composition is:
E 4? - g Thus it is understood that
the result is an arbitrar
—-1-.-—) —'."""'” y

interleaving of the steps

E 1, 2, 3... and a, b,..
!

and we suppress in this no-

—iH
!

tation all interrogations of

the oracle and do not mention

] .
47 i the pairing of the intermediate

and final results of the separate processes.

-2e The BIND combinator BIND apq = Av. (pv)] = g o EXTEND q(BINDa(pv)3)(pv)2,
< (pv)].(pv)z, BIND a(pv)3q >. BIND apq is represented by

v

ol o

vy

i
<L
n
=

It is the very case of binding where our notation pays off.
In particularly we see that the resulting process is indced a

process and that successive parts of q are substituted in p.

Moreover, when the process p makes no more interrogation to a
then the rest of q will disappear in the composition BIND apq.

0f course, the steps 2, 4 and b, d are understood to be the dy-
namical first, second... ones which will send a value to locations
& resp. 1.

When p is a process Py |IPys then our notation will be

3o
~

§S-——-—‘-——-—o-——-

where it is understood that the links to and ‘from q are tied in
sequence to the interrogationsof o and their successive steps in

the | |-composition.

.3 Some examples

Let for the present [text] denote the meaning of the text in its

environment.

3alet [x:=x+y] =Atr.<a, ', Ava. < B, s AVb. < a, va + vb,
Av. < 1, va + vb, 1>¥>>,

3in (x :=x+y)] =BINDa [x : =x+y] REG 3.

Let [reg x

Then, in our notation we get for the latter formula:

.3b

[
AN | | k63 /
Y J
\':"_'_E:: W 2==>) A At /3 >
{ ReE 3 Zevh
R N
vh N vaovk/\‘ b —_— vb 3+VL
< REG 3Jev. o O
v . e ¢
¢
L L
i.e. Atr. < B, !, Avb. < 1, 3 +# vb, 1 >>.

Note that the meaning of the programtext is an interrrogation of
the location of y, delivering the value returned incremented by 3.
This is the pure extensional meaning, because one can neither see
by what device the increment was forced, nor can one detect any

remainders of the register which internally was associated with

reg x = 3.

]

Let [: =1 =atr.< rl, !, Arv. <1l,rv,Av.< 1, TV, 3 >>>,

let [+ 1 = Atr.< 1lloc, !, Alval. < rloc, !, Arval. < i, lval+
+ rval, 1 >>>, .

let [y 1] = AvV. < B, v, Ayval. < 1, yval, 5 >>,

let [x 1 =)AV. <a , vV, Axval. < 1, xval,; >>

Then it is reasonable to define the meaning of the text
reg x = 3 in (reg y = 4 in (x : = x + y)) as

BND o BND g BND 11 BND rl [:=] BND rloc BND lloc [+]IxJ[ylLx]
(REG 4) (REG 3).

Here one really needs machine help in order to evaluate the for-
mula, if one sticks to the) =-calculus formalism ! But in our
representation the evaluation is done by drawing merely some
links without changing any of the given representations of parts
of the formula.

See figure 1.

Again, the meaning is purely extensional and noting is left of

the registers which were associated with the locations for x and y.

BNDA BND B BND .ot Bapat =] RND the BND foe [+ 1 Ix1

B AR & DL [:=] BiDabe 8D e [+ T [0

./ MDA BN [:=1 BN ke BND e H+1 fx1

/. 0y =] j%ze? [+3 [x3 =
// =] 28%«26&85.&

ﬂ..l.,_m

Under Ahe convewliown &} 3b,
fiad. Ahe wenning of (1gx=3 in (1eg y=u in (x:=24y)) s

I

BOL B0 BID £ BN 4€ §:=] 61 aloe B0 L F+ BEXIIWD Ix) (ReeiRecs)

.3c The semantics of some language constructs.

Efe(e')lr = E[elr * xv. (E[e']r * (v :

v/P))!:

L> aw <v/L, u, ID > ,

Ele Ir ~
\{: o)
(ECe3r

——
]
'} \—._) *_.._.M'RM v:L Aﬁ:_édﬂ.
" W [T
1
: —r 3 ey process
E ﬁﬂL..f::SF r'P
-
Elnx.elr = QUOTE (Av.E[elr {(QUOTE v)/x}!)inV:
5‘:-:_——"‘
Efelrf-/x}
(the dots abbreviate
(QUOTE v))
——o- —
L
Ellet slave x be e in e'lr =
BIND o/L E[e']Jr{ (QUOTEa)/x} pr/P ! >:

Elelr * Apr.< v, !, Aa.

- 10 -

Efelr
[{
! C
—_——> EEQ'BP{”'/I} MIP
| v \ /\
: ; o 1
' \\» 1 S
! MR
| j)
j |
)

Note that pr/P disappears when in Ele'Jr{.../x} no interrogation

will be made to a/L.

.la

PART 2 Defect of the semantics

There is a serious designmistake in the definition of the language. |
We emphasize that we do not claim the semantics being inconsistent.
What we will point out is that the semantic definition is not the
intended one and in particular the program for adding up the numbers

from | to 100 in parallel does not work as in intended.

An attempt is made to define the sematics as intended but the concepts

1

involved tend to be more "operational' objects than "mathematical"

such as processes and functions.Therefore the attempt doesnot satisfy me. ’

The effect of binding, the defect of the semantics.

Let p be a process in which no step will make an interrogation to B.
Then BIND Bpq = p.

This causes that the programtext

let slave settoone be wx.x : =1 in

let slave y be Cell (0) in settoonme (y)
has not as meaning the trigger process

Atr. < 1, 1, 1>

but is instead the process

Atr. < B/L, 1, Av. < 1, 1, 1 >>

where B is the second value delivered by the generator process

bound to v.

Indeed, the slave y is local to the scope of slave settoone and

is therefore bound first. In that binding no interrogation of its
corresponding location (assumed tobe B/L) is made. At the time

when frx.x ¢ = 1] is bound to the location (say a/L) for settoone
this process recieves B as value and then sends the value 1 to
location R/L .

But this interrogation is left open: the vacuus binding of [Cell(0)]
to B/L has been done sometime ago.

For the picture representation see fig. 2, page 13. Formally we

get

- 12 -

(1) Elprogramtext]r =

'y Aa.

(2) Elrx.x : = 1Jr &« Asto. < v ,
(3) BIND a/L E [..1r{(QUOTE o)/settoone} sto/P . >,
(4) E[...Dr{(QUOTE)/settoone} =

(5) E[Cell (O)Jr * Areg. < v, -, AB-

(6) BIND B/L E[settoone (y)]r{(QUOTE ®)/settoone , (QUOTE B/y}
reg/P ! >,

(7) E[settoone (y)]r{(QUOTEa)/settoone , (QUOTER/y} =

(8) = ——— =)tr. < a/L, B, ID >.

Now, in (8) and so in (7) no interrogation of B/L is made.
Therefore (6) reduces to (7) and so to (8). Hence (5) and (6) to-
gether reduce to Atr. < v, ', AB. < a/L, g, ID >>, and so does
(4). Moreover, it is easy to check that in (3) the sto/P is the
process Aloc. < loc/L, 1, ID > , hence (3) reduces to

Atr. < v, 'y AB. < g/L, 1, ID>>. Thus (2) and (3) together reduce
to Atr. < v, ', Aa: < v. 's AB. < B/L, 1, ID>>>, and so does (1).

After binding a generator to v this results in Atr. < g/L, 1, ID>.

.1b This means that in general the sematics does not give the intended
process when some outer-declared slave is applied to some inner
declared one.

This is rather umsatisfactory. In fact, the program in the paper

of Milner fails by this reason. The outer-declared slave is INC,

the inner one is j. Thus we can make the following changements in [1],
page 14 in the last but one sentence:

with these=> with more; cannot=2 can; is correct '== is not correct !!.

Just declaring the appropriate slaves local to the declaration of

their actual parameters seems to solve the problem, but conflicts

the intention of being one unique indivisible process: in general
one outer slave has to be declared several times as an inside one,

in particular this may be the case in a parallel composition.

13 -

10

®

errn s Jra Vst O), 2. 6N g_r@_gﬁo;..ammﬂw*»@t.r»\w. Bwp plL

[®

?

0] 01

8L1) nyl? Iy IR !5

Aans

[t

.

EE X% x:=4 e o o £V, |, 20 o BND ofl EFLE Bt y be C006) in sclorni(y) Tr{lus o)/ setloora} o]k [>
\.,/_} ot
y
3 -1 o —— ———
b sl g — 7 R\
v .Y Q :v@ tolB
ELGRETNESES gk, 06 b (L EQatrgTr{Zts, S0 agp {5 N 2 4 | B3
i RS e
S . T - N,) i el
v " — £ _, Ny _ A SPUA
Y mméa,.s:vmw....l.w I @ agP __. n
" /VIOII:I\W..\“&\ \.A.U.W?Im.m%lwlv : |
A T “=
A/ A 2 <
~
4.
Dhnqats.a to the sewmantis € Milwer-b fajper, N N !
Y A . ezl W o) v
F %ﬂhigeuqr Lot sows acttoowe be mv.x:=l Y Lok plowey de Cuel (o) w settoomnfy) 9 <_
(7 y«(.A_w._.-\yx.A(.... \yﬂw. A?——lv\ﬁ- A L2, v, PlVVVV ||. fm
v N4
>

Nevertheless I do see some sense in the proposed semantics.

The program writer of an outer block has an inherent protection
of his slave processes against being un(?)-intentionally used
by writers of inner blocks. This is quite similar to some pro-
posals of Dijkstra, I recently heard of. But no facility, like

a parameterspecification, seems to be possible to allow an inner
block program writer use the outer declared slave processes.

Indeed, such a facility would solve the '"designmistake'.

More comments on the program

The convention of letting x : = y be an abbreviation of z(val(y))

is not consistent with the convention of page 5, viz.letting

X : =y be an expression whose value is the value assigned, i.e. y.

Indeed, by the semantic definition the value of an application

x(...y...) is the value returned by the process corresponding with

X. A better alternative is letting x : = e be an abbreviation of

: = (x)(e), where : = is declared by

let rec : = be (mlhs. wrhs. let slave r be Cell (val(rhs)) in
lhs (val(r)); val (r))

In figure 3 the representation of r(: =) according to part 1 of

this paper is given. In that figure the innermost box postfixed

with inV is easily seen to be equal to

, i.e. ARAS. < RHS/L, !, Au. < v,!,

RMS |

RHSIL Aa. < LHS/L, u, Atr. < 1, u,1>>>>,
Y
" V'L This convinces me that r(: =) now

uuh. has the intended meaning.

!I-L
g ™
L

My personal experiences in deriving the above definition for
: = where as follows. I made the following attempts:
let rec : = be mlhs.wrhs.lhs (val (rhs)); val (rhs)

let rec : = be nlhs.mrhs. let rec r be val (rhs) in lhs (r); r

let rec : = be mlhs.nrhs, let slave r be Cell (val (rhs)) in lhs (r)y r

let rec : = be wlhs.wrhs. let slave r be Cell (val (rh=)) in lhs (r); r()

15 -

ELm. £ho. by, et adoe n Je (ot (vel(ab)) o s (ol (2)); val (2 TIr

EE ek slowe » be Co02(uablrln)) o Lhinfucl(n));valin) Tr-{ouste Lis 1o Aucte RIH I}

S e R SN
1 s .
» & 7
I S
o arll Ethstotiaf)uad(n) Pr {@* s, ¥ ousf g . GuotE dify, 1 A
RESG L0
ELehaliel(n)); vl Ir{ L. A5 rprl2
e wV] “\\&. N REE

I \\
P “ f Rl_lm ‘M\ o™
1 a——)
ofr — s e
Q\W. A —_— J -

I i .
This 53 (s (a pr
Lﬁaﬂuoa“mii..ﬁ& *
M .

o e o8 L
wsumton This proass ,Mw.h‘

"isL (RHs) " PR%&:«M a3 osrible

| ok =2
- I\ e
ol “1

ﬁ : #.ssg?eu& =, be p(Gs) , awithin M scope aﬂ Lok nse = be ?Q\..ug.ﬁw\vw el (A8s)) 1ue
_ .) \QSA(?R?&VV <§hm\~vv

- 16 -

until I realised that each indentifier has as meaning a quoting
process which

- either yields the location of the intended process (slave identi-
i fiers),

- or immediately yields the intended process (rec identifiers).

As a consequence

- slave identifiers are used senseless when they stand alone (as
the last but oune symbol of the program:
it should be val(s) in stead of s). By parameter transmission
they ultimately have to be used as "function symbols" of an
application, because it is the semantic equation of that very
language construct which uses the delivered location in the
right way.

- rec identifiers need not be function symbols. In particular
we can make the program looking more natural by deleting both
the abstraction 7Z. and all arguments () of Add. In addition,
in stead of repeating two times val (r) in the declaration of
: = mentioned above, we can replace it by one identifier v provi-

ded we declare let rec v be val (r).

.3 An attempt to repair the semantics

.3a Intuitively.
We should like to delay the binding of slave processes until the
whole programtext is considered, just as only at the end the gene-
rator is bound to vV by means of MNG.
More precisely, all nested slave declarations should be evaluated
yielding processes which are pushed into a list of processes.
The head - or tail - of the list is the process corresponding to
the main body of the program. To the list, being the evaluation
of the complete programtext, a binding combinator is applied,
yielding again a process in which there only should occur inter=—
rogations of v and w.

In my picture representation as follows:

- 17 -

let slave settoone be

Tet slave y

eettoone (y)

Cell (3)

s
~
I~

And the composition of these three should be the list

L

L—-.W—’P
e v

0

1
!
!
\]
]
)

RESD

®

and

and

which after application of the binding combinator should result in

Moreover, the bindings should force the processes to interact like

a kind of coroutines: after each interrogation (link into the pro-—

cess), the process answers (link from the process) upon the next

result flag the most recent process which has not yet recieved an

answer. A typical example is

2alLX Y

Wezs &

.3b

Note that in this way slave processes may be declared recursively:

an interrogation of itself is allowed.

Formally.

Whether I do or do not succeed in giving an elegant formal treat-
ment in the X - notation, the above exposition should be convin-
cing of the consistency of the ideas. It remains to be seen,however,
whether such a formalization indeed reflect the intended semantics.
I strongly believe that the above approach solves the problem to
which this part of the paper was devoted. But in stead of the very
elegant semantic objects, viz. merely processes, we are now led to
complex objects being lists of pairs of locations with processes.

I find this very unsatisfactory, but at the moment I see no way

to overcome it. In fact the obvious way of defining the binding
combinator requires the lists being lists of triples:

locations, stacks of locations (the return addresses) and proces=—
ses. Due to my unsatisfaction I do not Present the formal defini-
tion of the binding combinator and the required domain equations.
Instead, I announce that future work will be looking for a more
elegant solution to the problem, preferably sticking to merely

processes.

I acknowledge critical comments by.. Wiek Vervoort on a draft of

this paper.

References
[E-cTences

R. Milner:"An Approach to the semantics of parallel programs"
Edinburgh Techn. Memo, Univ. of Edinburgh (1973).

