1.

INDUCTIVE ASSERTION PATTERNS FOR RECURSIVE PROCEDURES

M.M. Fokkinga

Delft University of Technology
Dept. of Math.
132 Julianalaan

Delft -~ Netherlands

Introduction

Abstract. Hoare [L4] has given the proof rule

p A _B{S}p {a)
p {while B do S} p A7B (b)
according to which we may infer the validity of the "correctness assertion'

!

{(b) from the "inductive assertion" (a).
We investigate the possibility of setting up such rules for recursive
procedures, in which we only admit inductive assertions aboul elementary
statements, and which will characterize the recursive procedures in the
following senses:
(1) Let T be any program, then
the validity of the inductive assertions of the rule for P implies
the validity of the correctness assertion about T, if and only if
P is semantically an extension of T, i.e. T(x) = y » P(x) = y.
(ii) Any correctness assertion about the procedure holds if and only if
it can be derived by means of the rule.
It will appear that the premiss of such a characterizing rule in general
consists of an infinite set of inductive assertions (about elementary
statements) and that a finite characterizing set exists if and only if
the procedure is "regular".
We treat the problem only for monadic (i.e. one variable only) recursive
program schemes, as formalized in [2]. The interpretation of the schemes
is in terms of relations rather than in terms of functions. So we write,
for an interpretation c, rather (x,y) € c(P) than c¢(P){(x) =y

This paper is a summary of Fokkinga, M.M. [2].

Y,

Origin of the work. In [2] De Bakker and Meertens gave a definition for

the set of inductive assertions with which they achieved similar results.
But they frequently used the sophisticated Scott's Induction Rule in
their argumentation and they did not include the possiblity of a finite
pattern, nor did they formulate characterization (ii). Originally we
aimed to give a more direct definition and an‘argumentation without
using Scott's Induction Rule and in addition we wanted to analyze their

introductory "attempts that failed".

Sketch of the intuitive idea

Let A ;A

An be a statement scheme consisting only of elementary

P R
state;eni symbols and the sequention symbol; .
Then it is not difficult to give a setu@ of inductive assertions so that
"infer fromdf the correctness assertion pin{A1;...;An}pex" is a rule
characterizing the scheme A1;...;An.

Indeed, let¢# consist of pin==$ P, and pi{Ai}pi+1 (i =1,...,n-1) and
pn{An}pex' Then, (a) for any interpretation the validity ofe# clearly
implies the validity of the correctness assertion. Moreover, (b) if T

is some scheme and for any interpretation the validity ofe¢# implies the
validity of pin{T}pex, then we can prove that for every.interpretation c
A1;...;An is an extension of T.

(proof: let (xo,yo) ec(T), then we have to show (xo,yo) ec(A1;...;An).
Consider the hypothesis under a particular interpretation c'
vhich is obtained from ¢ by giving the predicate symbols
P;, = PgsPyseeesP 5Py g =P, the following meaning:

c'(pi) holds for x 2. (xo,x) € c(A1;...;Ai_1).

This is possible because the P, do not occurr in T and A ..,An.

’e

Then the assertions ine® are valid under c', hence also ;in{T}pex
is valid. Now because c'(pin) holds trivially for Xy, We may
conclude that c'(pex) holds for Yq (recall that (xo,yo) e c(T)).
By definition, this means
(xg>¥g) € elA5..38). Q.E.D.)

Hence (c), from (a) and (b) it follows that the rule characterizes the

scheme A1;...;An in the sense (i) given above.

This approach seems applicable even with schemes of more complex structure
than the simple sequence of elementary statement symbols. For instance,

an evaluation for some input of a procedure symbol P ultimately has to
result in a sequence of executions of elementary statement symbols A1;...;An.
Call such a sequence an evaluation sequence. When we define for each
evaluation sequence a set of inductive asscrtions just as above, and when

we let the setcd of inductive assertions for P be the union . of them,
thenoe characterizes the scheme consisting of procedure symbol P,

The approach just described is worked out in the sections 4, 5 and 6.

Preliminaries on program schemes

The program schemes (P,T,...) which we consider are formulated in [2].
They can be defined as follows.

A program scheme P is an ordered pair P = <D,P >, where

0
D = {Poé== SO,...,Pn€== Sn} is a declaration scheme and the bodies
SO""’Sn are statement schemes, which are inductively constructed from

- elementary statement symbols (A, with indices)

~ procedure symbols (P, with indices)

- constant symbols (identity symbol E, emptyness symbol Q)

by means of binary compositions with pairs of parentheses and

- the alternation symbol U

-~ the sequention symbol;

An interpretation c(P) for a program scheme P = <D,P_> is the interpretation

0

c(PO) of the statement scheme P, under an interpretation ¢ with respect to

0
the declaration scheme D.

An interpretation ¢ consists of the choice of a set, the domain Dom(c),

and the choice of a binary relation c(A) on Dom(c) for each relation

symbol A.

The constant symbols have a fixed interpretation under all interpretations
c: c(E) is the identity relation {(x,x) | x € Dom(c)} and c(Q) is the
empty relation on Dom(c).

The interpretation c(S) of a statement scheme S is a binary relation on

Dom(c) defined by the notion of computation sequence, which precisely

reflects the copy rule for procedure calls.

e

Predicate symbols (p,B,7B...) are clementary statement symbols, which

are interpreted as subrelations of c¢(E); the negation sign is interpreted

as ¢(7B) = {(x,x) | x ¢ Dom(c) A (x,x) ¥ B}.

Define an operation ";" for relations to be the concatenation,

1n on

(x,y) € R1; R2 Qe Jz: (x,2) e R1 A (z,y) ¢ R,, and an operation "u
to be the union of relations. Then ; and U are associative and for
schemes S, and S, we have, for all interpretations c, c(S1;S2) = c(S1);

1 2
c(Sz) and c(S, u S.) = c(S1) U c(s

1 2) 2)'
Letoa and £ stand for collections of assertions about interpretations

of schemes. The statement that "the validity under interpretation c of

the assertions in 4 implies the validity under ¢ of the assertions in€¢"

is symbolized in the formulauﬂkz £ . In particularf% f is the statement

that the assertions in € are valid under c. We abbreviate "for all
interpretations c#}ie" byﬁFe.

We use as assertions about interpretations of schemes only the set-theoretic

inclusion, symbolized by the connective c. The conaective = is used for
the equality on the domain of the interpretation. Thus S1 = 82 is short for
S1 €85, 8, ¢ S1. The connectives = and ¢ are used to express the (stronger)
syntactical relations with respect to formal languages and pure formal

objects. A setdof inductive assertions is called an inductive assertion

pattern.

Example. The program scheme determined by Po¢=ZB;A;PO v 1B is the procedural
form of the while statement. Hoare's rule now becomes p;Bj;A < A;p k:p;Po [=4 PO;
D5 1B,

. Program schemes and grammars

We employ context-free grammars as a tool for describing the evaluation
of - recursive - procedures. Let P be an program scheme. We associate with P

a c.f. grammar G-of-P:

the nonterminals are and correspond to procedure symbols of P,

- the terminals are and correspond to the elem. stat. symbols,

the derivations rules are and correspond to procedure declarations,

the alternatives in the rules correspond to alternation symbols U in the

schemes occurring in P.

THM

Def.

1

Due to the correspondences and the fact that the symbols of G-of-P are symbols
of the scheme P, it makes sense to speak of interpretations of syntactical

objects. In particular, we define for a language L c(L) = u(ce(t)sT € L).

| P = L(G-or-P)

proof: by induction we can prove for arbitrary interpretation ¢ and x
and y in Dom(c):

there exists a computation sequence x(Po)...y, i.e. (x,y) € c(P), if
and only if

there exists a left most derivation PO=£>T in G, with (x,y) € c(1),

i.e. (x,y) € c(G).

Inductive assertion patterns and tied complete derivation tries

A generalization concerning "tying the trees" is treated within the
square brackets [and]. A generalization concerning "completeness" is
treated within the Kleene brackets {and}. The definition without the
additions between these brackets, precisely covers the usual concept of

derivation tree of formal language theory.

A [tied] {completel} derivation tree B for a nonterminal or terminal symbol S

of a context-free grammar, where S is called the root symbol of‘.B,

is a diagram consisting of

- a [not necessarily] new occurrence of the symbol S, where the occurrence
is called the root of.J3,

- with in case S is a terminal symbol nothing,but in case S is a nonterminal symbol
a by this occurrence of S uniquely determined sequence {resp. uniquely
determined collection of uniquely determined sequences } of [tied]{complete}
derivation trees, that is to say

for a derivation rule with lefthand side S one such tree for
consecutively, say from left to right, every symbol in the righthand
side of the derivation rule {and just one such sequence for every
derivation rule with lefthand side S}

(N.B. uniqueness does not imply that sequences are not allowed to coincide).

A node of the tree is an occurrence of a symbol of the tree.

Def. 2

We picture this definition asB: S in case S is a terminal symbol,

and:B /? otherwise, vhere). is the root of,B. or
x_‘ =1 4 i

a reference " Qj‘ " to it.

1

Example. Let a grammar be given by Z -+ aZb, Z + c. Then .B' and B'' are
some (not-tied) der. trees for Z, and J3 is the (not-tied) complete deri-
vation tree for Z, and@ and.ﬁ are some tied cowpl. der. trees for Z:

v L S, AN AT

azb azb

O i
R

Jme

)
S|
o’

F

)
N
o

.,,;}

For a [tied] {complete} derivation treed3:
A (left most/right must) direct subtree

is every (L/R most) element from the sequence{s} as mentioned in 5.2.
A (left most/right most) subtree
is the tree itself, and

every (L/R most) subtree of any (L/R most) direct subtree of B.

(Directly) successive are two direct subtrees U and V

if U and V are elements of{one of} the sequence{s} mentioned in 5.2. and

V is some (resp. the) sequence element following U.

(Directly) successive are two subtrees X and Y

if there are two direct subtrees U and V of a subtree ofJ3, such that
U and V are (directly) successive and
X is (right most) subtree of U and Y is (left most) subtree of V.

(Directly) successive are two nodes

if the subtrees of which they are the roots, are (directly) successive.

Example. For the previously picturged..B' B! ,J3 the relations are obvious.

For.'IB1 we can state, among others, that:

a is L-most subtree (node) and b is R-most subtree (node),
upper upper

a is dir. successor of a and b is dir. successor of b s
lower upper upper lower
c is L/R-most subtree (node) and c is dir. successor of g
upper lower upper’

e

and due to tying the tree:
the subtree determined by the reference[ew)ﬂ in the bottom line coincides
with the whole tree<B1, hence

i1s dir. successor of a and b is dir. successor of b

a
upper lover lower upper’

c is dir. successor of a and b 1s dir. successor of ¢ .
upper lower lover upper

Def.3 A (direct) production is a sequence of direclty successive (direct) subtrees

,31;. .o ;*Bn of.B, such thatJ31 andﬁn are resp. a left most and a right

most subtree ofB. A terminal subtree (node) is a subtree which is an

Occurrence of a terminal symbol. A terminal production is a production

consisting o: terminal subtrees. A sentential form (resp. sentence)

is the sequence of root symbols of a (terminaD production. The language
L(§) of JJis the set of sentences otB. We denote a node which is
an occurrence of the symbol A by K.

Example. L(B') = ¢, LB'"') = {acd}, L) = {a"cd” | n > 0},
L(I%) = {a"cp™ l m,n 2 0 A n=m(mod 2)}, LQBz) = {amcbn | m,n > O}.

From the definitions follows immediately the
THM The language generated by a c.f. grammar equals the language of the not-tied

complete derivation tree for (the sentence symbol of) that grammar.

The definition

of the Inductive Assertion Patterndf based upon a [tied] complete derivation
tree.B and with respect to correctness predicate symbols Pl and pex reads:
Let {pi}i

bijectively associated with the terminal subtrees (nodes) of the tree.B.

- be a collection of new predicate symbols which are

Then & consists of the following assertions

- for directly successive terminal subtrees (nodes) A and A (with associated
predicated symbols p and p') the inclusion p; A c Ay p!

- for left most and right most terminal subtrees (nodes) A and A’ (with predicate

symbols p and p') the inclusions p; S P resp. p'; A' c A', Py’

6. The characterization theorem

In the sequel
- ve letoﬁ- be an ind. ass. pattern based upon some tied complete der. tree @
- and we let P be any program scheme with associated context-free grammar G
B } . . e .)
and® (..)is an abbreviation of Pips-r-Seves Py
Note that henc‘:eforth‘B need not be related to G; we want to investigate their

charaterizing power and therefore they must be unrelated entities.

The essential proof - without employing Scott's Induction Rule - follows in
the Main lemra

(1) RFe(Ld))

(ii) for any scheme T, & €(T) implies }-—‘- T c L{B)

(iii) E(L@)f &

(*: provided the pred. sym. P; inWare conveniently interpreted).

proof
(i). Let c be any interpretation and let T = A1;...;An e LB).
Then there are directly successive terminal subtrees (nodes) KP'" ’Kn

in B , of which A1 and A are left most and right most ones.
S Apipy,, for

Consequently the inclusions p; £ P, end pi;Ai
belong to® . From the validity of A

i=1,...,n-1 and pn;An [= An;pex
under interpretation c¢ there follows consecutively for i = 0,1,...,n-1

the validity under c of

Pinifqsosssh, €A sALD. so

pin;A1;...;Ai;Ai+1 [= A1;...;Ai;pi+1;Ai+1 so according to pi+1Ai+1 c Ai+1pi+2
pin;A1;...;Ai ;Ai+1 c A1;...;Ai;Ai+1;pi+2

where for i = n+1 P o= P So

,ﬂ.ﬁ- Py 5T ST3P., for any T € L(B), so also

(ﬁFEU(pin;T) _C_U(pin;T) the union taken over all T ¢ L@),
AR Pin’ Vt) ep, 5 W) Q.E.D.
(ii)Let c¢ be any interpretation, we show Fc- T ¢ L(B). Thus let x, and

Y, be arbitrary elements in Dom(c) with (xo,yo) € ¢(T), then we have to show

(x,57,) € (L@

Consider the premiss under the particular interpretation c', obtained
from c merely by changing or defining the interpretations of the predicate
c T Because they do not occurr in T and L(J),
we have ¢(T) = ¢'(T) and c(L(B)) = c'(LEB))

Informally, we give Pin’Pex’pi(i € I) the meaning that holds true for those

symbols p. ,p . and {pi}i

arguments x which result from input X and a computation by the successive
Byseooshy
up to, but not inecluding, the symbol Ai with which the predicate symbol is

(which occurr as an initial segment of a sentence in the treelS)

associated. Herein we consider P and Poy to be associated with an
imaginary begin and end marker of sentences of‘jB.

Formally the definition reads

(x,x) e ' (p) + o there are directly successive terminal nodes

A1, .,A 1njb such that A1 is a left most one anAd

(xo,x) € c(A1,...,Ai_1) and p is associated with Ai.

1
(x,x) e c (pin ng x = X

) e o : :
(x,x) € ¢ (pex) e (x »X) € c(A1, ,An) for some terminal production

A1 A of &%

It is now easy to verify the valldlty of &2 under c':
- if p; A c A; p'belongs to«/&, then p and p' are associated with directly

N

successive terminal nodes A, R'. So from (x,y) € c'(p3A)
it follows that (x,y) € c'(A) and (xo,x) € c(A1;...;Ai_1) for some
sequence of directly successive terminal nodes K1""Ki—1’ﬁi = A.

";Ai—1);c(Ai) = c(A,;...3A.),

So we have (x,y) € ¢'(A) and (xo,y) e c(A 13- N

.
i.e. (x,y) € c'(43p"). 1

- if p. SP belongs to , then trivial

- if p3A ¢ Aipex is in &, then analogously to the first case.

So according to the premiss of the lemma pin;T c Ty Poy holds under c'.

We have assumed (xo,yo) € ¢(T) so that (xo,yo) € c'(pin;T) holds, too. So

with the inclusion just derived it follows that (xo,yo) € c'(T;pex) and

in particular (yo,yo) € C(Pex)' By definition this means (xo,yo) e c(T)

for some sentence T ¢ L(B), hence‘(xo,yo) e ¢(L(B)). Q.E.D.

~10~

(iii). The convenient interpretation of the pred. symbols in & is tne following:
let ¢ be given for all symbols except for the pi(i € I), then (x,x) < c(p) e

there is some X in Dom(c) such that (xo,x) € c(pin;A;...;Ai) for an

-1

initial segment A ; .;Ai of some sentence of JJ where P 1s associated

3
with Ai'

Now suppose ¢ (L(B)) is valid under some c, then it is easy to verify the
validity of the assertions in ¢ under c with the convenient interpretation
for the pi(i € I): .

for P, SP and p;A c A;p' indd it is straightforward, and

for p;A c A;p,_, we argue as follows: let (x,y) € c(p;A) then by

A

definition (xo,x) € c(pin;A1;...;An_) and (x,y) € c(An) vhere An

1

and p is associated with A, so (xo,y) € c(pin;A1

L(B), hence by the assumption of the validity of € (L(5)) under c we get

;...;An) for some sentence of

(xo,y) € c(A1;...;An;peX). So both (x,¥) e c(A) and (y,y) € c(pex) hold,
hence (x,y) € c(A;pex). Q.E.D.

Lemma

(i) A Eker) irf L(8) 2 L(G)
(ii) for any scheme T, l:e(T) implieskT ¢ P iff L(8) ¢ 1(c)
(iii) €(r) 8 iff L(3) < L(G)

(*: provided the P in & are conveniently interpreted,
in case we read the equivalence from right to left).
proof. Apply the Main lemma and use F:P = L(G) and the easily provable fact
L1 c L2 iff #-L1 c L2 for languages L1 and L2. Use in (iii:?) an interpretaticn
¢ such that the validity under ¢ of (L(B)) is equivalent with LB) < L(a).

Characterization theorem

Any of the following three characterizations holds if and only if L(B) = L(G):
(i) for any scheme T

ﬁFE(T) if and only if P is an extension of T, i.e. }:T c P
(ii) for any fixed point T of the scheme P

B EC(T) if and only if T is the minimal fixed point of P, i.e. Er =P
(iii)dg-F=e&P) is a "complete" proofrule for assertions about P.
proof.By dull manipulations of the previous results and noting that (ii) is

a consequence of (i).

-11-

Conclusion In order that the Inductive Assertion Patternoe— based upon

some tree @ - characterizes the scheme P - with associated c.f. grammar G -,
we have to choose.z-‘} such that L(B) = L(G). This equality is easily achieved when
we choose@ as the not-tied complete derivation tree for (the sentence

symbol of) the grammar G. See the theorem in section 5. But then ¢® is in-
finite as soon as P contains a recursive: procedure. This is unsatisfactory,
the more so as the while statement can be considered as a recursive procedure
and the only assertion of Hoare's proofrule characterizes the while statement!
The question arises whether we cannot define a more economic pattern .

We can achieve finiteness by tying the underlying tree,% so that we get a
finite diagram. This possibility is achieved by the additions between the

square brackets [and] in the definitions ol section 5.

Finiteness Theorem

.B, hence (£, can be chosen finite with L(3) = L(G) if and only if L(G) is

regular (and then we say P is regular).

proof. If §J is firite (in the number of terminal nodes) then we can construct
a finite automaton by co'nsidering.ﬁ as such and which accepts L(B) due to the
control mechanismas induced by the first clause of def. 3 of section 5.
Conversely, for every grammar G' in regular form we can construct a finite tree

JB with L(B) = L(G), by tying whenever possible for nonterminal nodes.

We have given a very general definition of tying trees. In the proof above we
used a particular case:very straightforward tying whenever possible (for
nonterminals). By choosing a convenient way of tying, we can get all intro-
ductory patterns of [2, section 4.1.] which appeared to fail. There some
patterns were proposed as characterizing a recursive procedure P, but whereas
ﬁ";@(P) was true, the implication "@ E@(T) implies ‘: T c¢ P" was not.
The cause is now clear: the language L(B) of the tied tree on whichf was
based, did not equal the language L(G-of-P) generated by the grammar G-of-P
associated with the scheme P.

Counter example theorem

A program scheme T is a counterexample of ”v@Fe(T) implies ,: T c P" if and
only if the grammar G-of-T associated with T satisfies the following require-
ments: (1) L(G-of-T) < L(B) (ii) L(G-of-T) gL(G—of—P)

proof By manipulations of the previous results.

—-10-

7. Example/Application: the while statement characterization

The while statement W = while B do A can be considered as recursively
defined by W= B;A;W u 7IB.
The c¢.f. grammar associated to W is given by

W > (B;A;W uTB) (B;A;W u TIB) = B3A:W (BjA;W u 1B) » B

An equivalent grammar in regular form is wé"_
W+ ByA;W W -TIB i \
The tree J§ constructed aécording the Finiteness Thm is: B A I{ ‘lB.'
The patternf based upon,% , 1s AN

according to the definition:
B:p,epp PRsBeBip, DA S Aipg piA € Aipyy
. 1

pln = P-'B P'lB’ Bc ‘IB:P
By contracting the 2nd + 3rd and the 2nd + 4th inclusion we can eliminate Py-
Thus we obtain the equivalent *) pattern

/1.

(@ PP, & Py

Pin S Pqp Pags 1B € IBip_
Because B and 7B must be interpreted as "predicate relations", it is easy

PpsBiA c BiAspy ppsBsA B Aipqq

to verify by elementswise consideration thatef' is equivalent) to

LI Y «R
A'ip cp piBiA

In

Aipy ppBsA < Aipqp
pln E ij P1B3 .C_ pex
And finally, by suitable substitutions for the predlcate symbols Py

and Pag» respectively for the new p1,y5}." is easily demonstrated to be

. *)
equivalent to

b@"’=pinsp1 Py3BsA € Aspy p3TBep
According to the theorems we have that
(1) for any scheme T

#"'}=p € Tp,, if and only irfe T c W
(ii) for any scheme T whlch satisfies FT = B;A;T uTIB

Ao Fpin’T € Tipg, if and only if |=T =V
(iii) both Q' }: P;sW < Wb, . and p; W< WP F*ﬂ' n

* . R . .
): in the senseu@. }: and‘ﬂ2 r—*# *i provided the predicate symbols in

the righthand side are conveniently interpreted).

13-

References

[1] de Bakker, J.W.,
Recursive procedures

Math. Centre Tracts 2&, Math. Centre Amsterdsm, 1971.

[2] de Bakker, J.VW.,and Meertens, L.G.L.T.,
Simple recursive program schemes and inductive assertions

Math. Centre Report M]h2, Math. Centre Amsterdam, 1972

[3] de Bakker, J.W., and de Roever, W.P.,
A calculus for recursive program schemes
Proc. IRIA Symp. on Automata, Form.lang., Programming
North Helland, Amsterdam (ed. Nivat)

[4] Hoare, C.A.R,,
An axiomatic basis for computer programming
C.ACM 12 pp. 576-583 (1969)

[5] Fokkinga, M.M.,
Inductive Assertion Patterns for Recursive Procedures

Techn. University Delft Report, 1973 (25 pp's)

Recently there has appeared:
[6] de Bakker, J.W. and Meertens, L.G.L.T.,
On the completeness of the inductive assertion method
Math. Centre Report IW 12, Math. Centre Amsterdam, 1973.
which is a generalisation of [2] and includes our results, however proved in

a different way.

