",

INDUCTIVE ASSERTION PATTERKS FOR RECURSIVE PROCEDURES

M.M. Fokkinga

.Delft University of Technology

Dept. of Mathemratics

Julianalaan 132

Delft ~ Netherlands

Contents

1.

~N O V1w N

Introduction

1.1. Abstract

1.2. Origin of the work

1.3. Restricticn

Sketch of the intuitive idea

Preliminaries on program schemes

Program schemes and grammars

Inductive assertion Patterns and tied complete derivation trees
The characterization theorem

Example: the while statement characterization

A shortened version is intended for publication in Prcceedings of

Symposium on Programming, Paris 9-11 April 197k.

1.

1.

Introduciion

Abstract

P A B{s}p (a)
P {vhile B do S} P ATiB (b)
according to which we may inTer the validity of the "correctness assertion'

Hoare [IV] has given the proof rule

(b) from the "inductive assertion" (a). The rule even characterizes the ?

while statement in the following sense:

(i) Let T be any program satisfying 7 = if B then (S;7). Then %//’Qfg\
the validity of P A B{S}P implies the validity of P{T}P A B

if and only if T = vhile B do S, (Scott, seelI]).
N.B. Here and in the sequel the equality of programs concerns the input-

output behaviour.

The rule also characterizes the while statement in the following sense:

(ii) any correctness assertion about the while statement holds, if and only
if it can be derived by means of ithe rule (and some additional rules,

such as: P=>R, R{T} S, 5= Q implies P{T} Q).

We investigate the possibility of setting up such characterizing rules, in
which we only admit inductive assertions about eZemeﬁtary statements,

for recursive procedures. It will appear that the premiss of such a charac-
terizing rule in general consists of an infinite set of inductive asser-
tions (about elemantary statements) and that a finite characterizing set

exists if and only if the procedure is "regular". We will derive the

e

analogue for recursive procedures of (ii) and the following charaoterIZdtlon.;ﬁ

(11i) Let T be any program, then e

Y

iy
the validity of the inductive assertions of the rule for PE §§ Jyd# ”’wp

s
implies the validity of the correctness assertion about T, -&ng*wﬂr
if and only if P is semantically an extension of T, i.e.

T(x) =y + P(x) =

N\
From (iii) the analogue for recursive procedures of (i) is easily obtained,‘; \bﬁﬁ
. v}’ -J'J’
i.e. Q.
(i') Let T be any fixed point of the recursive program P, Then é§ﬁ ‘&

the validity of the 1nduct1ve assertions of the rule for P QpiQQ *’
implies the validity of the correctness assertion abou+ T

if and only if T is the minimal fixed point, i.e. I' = P.

PRI

1.2. Origin of the wvork

1.3.

In [I] De Pakker and Meertens gave a definition for the set ol inrductive
assertions with which they achieved similar results. But they frequently
used the sophisticated Scott's Induction Rule in their argumentation and
they did not include the possibility of a finite pattern, nor did they
formulate characterization (ii). Originally we aimed to give a more direct
definition and an argumentation without using Scott's Induction Rule and in

addition we wanted to analyze their introductory "atlempts that failed".

Restriction

We treat the problem only for monadic (i.e. one variable only) recursive
program schemes,as formalized in [I]. The interpretation of the schemes is

in terms of relations rather than in terms of functions. So we write, for an

interpretation ¢, rather (x,y) € c(P) than c(P)(x) = y.

PR

Sketch of the intuitive ideé

Let A_sA 5...3A_ be a statement scheme consisting only of elementary
172 n
statement symbols and the sequention symbol; .

Then it is nct difficult to give a setd# of inductive assertions so that

"infer from# the correctness assertion Pin {A1;...;An}Pex" is a rule
characterizing the scheme A1;...;An.
Indeed, let ¢} consist of P > P and Pi{ Ai}Pi+1 (i= 1,...,n-1) and

Pn {An} Pex' Then, (a) for any interpretation the validity of¢2 clearly
implies thevalidity of the correctness assertion. Moreover, (b) if T is some
scheme and for any interpretation the velidity of? implies the validity

cf Pin {T}Pex” then we can prove that for every interpretation ¢

A1;...;A.n is an extension of T.

(proof: let (xo,yo) € c¢(T), then we have to show (xo,yo) € c(A1;...;An).
consider the hypothesis under a particular interpretation c'

which is obtained from b ty giving the predicate symbols

Pin = PO, P1,..., Pn’ Pn+1 = Pex the following meanlng:
1 - . .
c (Pi) holds for x For (xo,x) € c(A1,...,Ai_1).
This is possible because the Pi do not occurr in T and AT""’An°
Then the assertions inJ/# are valid under c', hence also
s . via
Pin{T} Pex 1s valid. Now because c (Pin) holds trivially for X

wve may conciude that c'(Pex) holds for Yo (recall that
(xo,yo) € ¢(T)). By definition, this means
o,yo) € c(A1;...;An). Q.E.D.)

Hence, (c) from (a) and (b) it follows that the rule characterizes the

(x
scheme A1;...;An in the sense (iii) given above.

This approach seems applicable even with schemes of more complex structure
than the simple sequence of elementary statement symbols. For instance,

an evaluation for some input of a procedure symbol P ultimately has to
result in a sequence of executions of elementary statement symbols AT;""An'
Call such a sequence an evaluation sequence. When we define for each
evaluation sequence a set of inductive assertions just as above, and when

ve let the setd or inductive assertions for P be the uninion of them ,

then #characterizes the scheme consisting of procedure symbol P. The

approach just described is worked out in the sections 4, 5 and 6.

In section h:
In order to get & formal definition for this approach, we employ context-
free grammars as a tool for describing the evaluation of - recursive -
procedures. Lel I’ be a program schewe. Ve associate with P a c.f. grammar G:
- the nonlerminals of G z2re and correspond to the procedure symbols of F
~ the terminal symbols are and corrcspond to the elemenrntary statement symiols
- the derivalion rules are andcorrespond to the procedure declarations
- the alternalives in the rules correspond to the choice constructs

(e.g. iﬁ then else) in the schemes.

Then the sentences of G arc precisely the evaluation sequences of P.

In section 5:
For the sake of a definitlon as explicit as possible, we define the concept
of a complete dzrivatior tree as an extension of the well known concept
of derivation tree from formal language theory. In a complete derivation
tree there desgead from each nonterminal symbol as many sublreeg as there are
production rules for that nonterminal in the given grammar. Thz sentencc
of a derivation tree is the sequence of terminal symbols next to eaech other,
to begin with the left most one and to end with the right most cne. ¥e
extend the relation "next to each other" (and will call it "directly
successive") so that the complete derivation tree produces a collection of
sentences rather than one sentence, that is to say it produces the complete
language of the given grammar and hence the complete set of evaluation sentences
of the program with which the grammar is associated.
The definition of the setd? of inductive assertions with respect to the
correctness predicate symbols Pin and Pex now becomes:
associate with each terminal symbol A in the complete derivation tree é?
for the grammar assoclated with the program scheme P a nev predicate
symbol p. Thend§ consists of
- for terminal symbols A and A' (with associated predicate symbols p and
p') which are next to each other, the assertion p{Alp’
- for left most and right most terminal symbcls A and A' (with asso-
ciated predicate symbols p and p') the assertions Piﬁ$p and
p‘{A'}Pex.

Lo
v

In zection 6:

Tndeed we can now derive the required results with this definition.
Essentially this is done in the Main Lemma - quite similar to the proof
given above —. Put the set.} is infinile as soon as the program scheme
contains a recursive procedure. This is unsatisfactory, the more so as the
while statement can be considered as a recursive procedure and the cnly
assertion of Hoare's proof rule characterizes the while statement.
Therefore we make the definitions more general so that they include finite
sets, too. We only change the definition of the trees: now we allow trees
to be tied, that is the branclhes of a node need not necessarily descend to
nodes beneath, but may be tied to nodes above and beside. The relation
"next to each other" is extended so that in any case the sentences of ihe
not-tied complete derivation tree will be produced by every tied complete
derivation tree based upon the same grammar. But in general the language
of a tied complete derivation tree includes the language of the not-tied
one properly.

Furthermore, we base the definition of the set # of inductive assertions
on an arbitrary tied complete derivation treeig and not necessarily

on a tree for the grammar associated with the program scheme P.

Now under some conditions all proofs and theorems still hold. Therefore
we treat these two generalisations immediately from section 5 on.

At last, we derive the conditions for P in order that%#can be finite and

st1ll characterizes P.

w

Preliminaries on mivcgran schemes

The program schemes (F,T,...) vhich we consider are formulated in [I].
They can be defincd ar followz.
A program schene P is a ordered pair P = <D,S>, vhere
D = {p & R Pné==sn} is a deeclaration scheme and S and the bodies
S1,..., Sn are statement schemes, which are inductively constructed from
- elementary statement symbols (A, with indices), also called relation symbols
- procedure symbols (P, with indlces)
- constant symbols (identity symbol E, enptyncss symbol Q)
by means of binary compositions witﬁ’pairs of parentheses and
- the alternation symbol u
- the sequention symbol;
Where no confusicn results we omit the parentheses and in particular
we allow the empty string A as the trivial statement scheme.
A meaning (IZnterpretation) c(P) for a program scheme
P = <D,5> is the interpretation c(S) of the statement scheme S under an
interpretatlion ¢ with respect to tﬁe declaration scheme D.
An interpretation c consists of the choice of a set, the domain Dcm(c),
and the choice of a binary relation c(A) on Dom(e) for each relation
symbol A.
A statemeat scheme S is imterpreted under an interpretation c with respect
to & declaration scheme D as the binary relation c(S) on Dom(ec), defined as:
(x,y) € c(8) if there exists a computation sequence
XO(SO)X1(S1)'"Xn(Sn)xn+1’
with x = X 3 = S0 and Sn+1 = A, X 4 =Y
and for i = 0,1,...,n the Intermediate results X; in Dom(c) and the
components Si’ statement schemes, satisfy the following seven
conditions (six of which are obtanined by either reading or skipping

the symbols between [and J]):

3 = t.a"Y.aqr1t = at. ti.qt =

if 8, = (s';s8");s then 8, . = 8'; (s'';8''') and Xi1 = %
-if 8; = (8" v 8"") [38"''] then 8, 4q = either 8'[;8'''] or 8'' [38'"" Jand X;
- 1 = Yttt - .ttt = .

if Si =P [;8"''] then Si+1 =8 [38'''] and X5 o1 xs

where P& S is in D

- o :‘J . e . = tee . .

if Si =L [;S] then Sl+1 [s'**] and (xl,xl+1) e c(L)

for relation and constant symbols L.

+1=x:

3o3-

Here the conclant symbols have a fimed interpretation under all

. L. - iy . g - -r(.) . - DOI)(C)I

interpretastions c: c(E) 1g the 1dentity relation {(x,x X € 1 k

and c(R) is the empty relaticn on Dom{e).

A statement schome O cecure coecutcehiy ir & computation sequence if there

1s a component B, =8 ;8'.

Define an operation " ; " for relaticns to be the concatenation,

+> z: (x,2) € R

2 def 3 ? 1
. } . . . , e

to be the wnion of relations. Then ; and U are associative and for schewes

= c(S1); c(s,) and

(x,y) ¢ R,5 K A (z,y) e R,, and an operatior "

. . o .
S1 and 32 we have ,for all interpretetions c,ci(S,;S

r:(S1 U 52) = c(S1) U c(s

1 2)

c
2). Purthermore, c{Q) = c(E).

Let 7 ana [stand for collections of assertions about interpretations of

schemes. The statement that "the validity under interpretation ¢ of ihe
assertions indd implies the valtdity under c¢ of the assertions inf "

is sywbolized in the formulaugf‘-c—ff.

In particulari% € is the statement that the assertions in Care valid under
c.

We abbreviate "for all interpretations CuQEE " by A ,: €

We use as assertions about interpretlations of schemes only the set-thecretic
inclusion, symbolized by the connective €. The connective = is used for

the equality on the domain of the interpretation, both for elements and

for relations. Thus S1 = S2 is short for S1 c 82, 82 [= S1.

The connectives = and € are used to express the (strongcr) syntactical

relations with respect to formal languages and pure formal objects.

The formalism thus defined, of program schemes and assertions about inter-—
pretations of them has great powers of expression.

It handles recursiveness.

It handles nondeterminism by means of (the interpretation of) the alternation
symbol u and the interpretation of the elementary statement symbols as

relations rather than functions.

Predicate symbols (R, 1B, Pin’ Pex’ P...) are considered as a special
class of relation symbols by the faci tl=nt their interpretation is a
subrelation of the identity relation. So let "B" be an predicate, then
B = {(x,x) | "B" holds for x} is identiiicd with "B", and

B = {(x,x) | "B" does not hold for x} is identified with not-"B'".

Thus we can denote the conditional(B - A1, A2) or if B then A1 else 4

by B; A1 v B A2.

Correctness assertions ¥x,y [Pin(x) AX Py Pex(y)] give a property
which holds for the output of & program provided that the input satisfies
some initial property.Hoare writes them as Pin{P} PeX but in our fermalism
they read Pin;P c P; Pex' Inductive assertions are such asserticns about the
parts from vhich the program - inductively - is constructed. We restrict
inductive assertions to inclusions p;'A c A;q for elementary stetcment
symbols A. A sel of inductive assertions is called an inductive asser-
tion pattern.

The vhile statement while B do A is due to ist meaning in fact a csll

of the recursive procedure Wé= Bj;A;F U 1B. The proof rule of Hoare

reads: v A B{Alp implies p{Vlp A B

or: Vx,ylp(x) A B{x) A xAy + p(y)] impiies Vx,v [pol(x) A Wy + plv) A TR(y)]

In our formalism it becomes p;B;A c A;p F PV < Wip;3iB.

h.1. Given a program scheme P = <D,S
prog s

o
b

L. Progran schomes and grosmors

; > with » = {p, &=5 ,...,P &=58

O A {1JI\ ..l: :n‘ n},
then we define & contexb-free gromtar & ass.oclated with P as follows.
Let P be a new procecure symbel and set D, = {Poézzso} u D and

PO = <DO,PO>. Now GE<VL’VT}R’PO>’ where

VN is the sel of procedure symbols in PO united with a sel of symbols.

nemely for each statement scheme occurring in PO ol the form

(S1 U 82) one symbol which we write as (S1 U 82),
VT is the sel of elementary statement symbols, also called relation symbcls,
R is a set of derivation rules;

for each declaration Pi€==-Si in D cne rule which we write as Pi -+ Si’

and for each statement scheme (S1 U 82) in PO two rules, which we

+ 5, and (5, u 8

1 { 8 - .
write as \81 U 1 1 2) 82

5)

In sentential forms we explicitly denote the concatenation operator as;

Due to the notation of the symbols of G, syntactical objects can be considered

as schemes and vice versa. Thus for T ¢ L(G) and interpretation c,c{T) makes.

sense and for a statement schene S, 85 ¢ L(G) makes sense.

. as variables over (V.. u V i over V

. *®
Convention. We use 0,0 N T) 2

120 N®

*
T over VT and, of course, A over VT.
- - *
For interpretations ¢ and a set L < VIII ve let
c(L) =deix’h?e L c(t), in particular

c(L(6)) =der'r‘e L(g) ¢(1)-

In the next two lemmas we do not prove, at least not explicitly, the syn-
tactical equality of the evaluation sequences of P and the sentences of the

grammar G associated with P, but a semantical consequence of it, namely

Er = L(c).

L™

B]

. Lemma

For any interpretation ¢ and x and y in Dow{c) and any T ¢ L(G) such that

(x,y) ¢ e(1)

there exists a computalion seguacnce x(PO)—-~ v (wv.r.t. D, and c) .

0
proof

. . *
By induction on the leugth of the left most derivations in G, denoted by =3

ve prove:
for all O:ﬁf T101where(j and o do not begin with a relation synbol and

(x,¥5) € clt,)

there isr an initial comp. seq. x(0) ——- y(G1) w.r.t. DO and c.

The lemma then follows as a special case with G = PO and 01 = A

length = 0: the trivial case, no derivation, 0 =T 0, and T, = A.
]

Hence C(T1) = ¢(E) and x is identical to y. Then ; alone i; the iritial
comp. seq., it is a trivial one with lengih zero.

length > 0: let 0:%5T1 N 01==§T1T20201 vhere 6,0, does not begin with a
relation symbogkmewd. (x,v) € c(T1;T2).

Then there is a z such that (x,z) € c(T1) and (z,y) € C(Tg)'

Tor O:ﬁ$ T, N op with (x,z) € C(T1) there is by induction hypothesis an
initial comp. seq. x(c) ——- z(NO1).

We let an extension of this initial comp. seq. correspond to the appiizd

)

rule N -+ T,05 in the derivation. Namely, in case N is a symbol (S, u S

1 2

the rewriting of N as the alternative s1 or 82 whichever ic TEOQ’ and in

case N is a procedure symbol the rewriting of § as the body (which is T,.0.).

Let 12 = A1; 0° z1,...,zp =y

with (Zi—1’zi) € C(Ai)' We extend the comp. seg. to

x(0) —— z(No, O(A15'“5Ap;0201)z1(A2;"

so that the induction step has been proved.

. AP then there are z = 3

)z

.;AP;0201)—-———- zp(020),

1

2

b.3.

bk,

Lemma

For every comp. seq. x(P.) -—— y w.r.t. D_ and interpretation ¢ there exists

0]
a T € L(G) such that (x,y) ¢ c(T).

0

proof

We prove by induction on the number of components not beginning with a relation
syubol that for every comp. seq. XO(O) —== X, where O does not begin with

a relation symbol,

there exists a left most derivation O:ﬁs T for G with (x,y) € c(T).

The lemma then follows as a special case with 0 = P_,

] 0
number = 0: trivial case, the "empty" sequence x, where 0 = A.
The required derivation is the trivial empty one, where 0 = A = T,

for c(A) = ¢(E) so (xo,xo) € c(T).

number > 0: let 01 be the first component after 0 not beginning with a

relation symbol. Then the sequence is xO(O) — xl(01) - X% . (if number = 1

k
then o, = Aand 1= k).
By induction hypothesis there exists a derivation o ==$ T, with (x WX) cel(1,).
T —— 1 1 17k 1

The initial segment of the sequence has the form

O(A1;...;Al;01)x1(A2;...;Al;01) — xl(01) with

xO(NO‘)x
(xo,xl) € c(A1;,..;Al). To the rewriting of N as AsAg.e. .. (that is to

say, either the body of N if N is a procedure symbol or an alternative

if N is a scheme (S, U SQ))there correponds a derivation rule in G (namely

1

P> S with 8§ = AA,... or (S1 U 82) > 8, or (81 U 82) > 8,, depending cn
whether %J = or 82.5 A1;i2...). So

g = NO'=}A1;...;Al;01=>A1;...;Al;T1 is a derivation in G with

(xo,xl) € c(A1;...;Al) and (xl,xk) € C(T1), so (XO’Xk) € c(A1;...;Al;T1).

Hence the induction step has been proved.

Theorem |=P = L(G)

proof

Let ¢ be any interpretation and x and y in Dom(c). Then by definition
(x,¥) € ¢(P) if and only if there exists a comp. seq. x(PO) ——y

w.r.t. DO and c. Now apply the lemmas.

5.

5.2.

Tuductive asseriion petterns ond tied completa derivation trees

In order Lo get an intuvitive idea sonewlc! casier, the reader may follow the
historical dcvelopreat az oullined in section 2.

Therefore he shculd then first read the text up to (6.6), skipping

the additions between the square brackets [and 1, concerning

"tying the trees". After that he may read the complete text form here onvards.

As described in section 2 we want to give the definition of an inductive
assertion pattern on the basis of a [tied] complete derivation tree.

Tor the sake of clarity we need some terminclogy.

On the first rcading of def. (5.2.) we advise the rcader to realize that
the "derivation trees" without the additions between the brackets { and },
concerning the completeness, precisely cover the usual concept from formal
language thegﬁﬁ?_The nown "occurrence" reflecte the fact that we have

in mind a diagram as intuitive image of derivation trees.

After tying a tree it i1s rather strunge to speak of subtrees and thereforc
we denote that concept with the noun ‘component". As denoctation of the
symbol whose occurrence is the root of a tree (component), the noun
"original" is used. We use the noun "origin" instead of "roo%", in order

to render the close connection with the original.

Definitions
A [tied] {complete} derivation tree:Z}for a nonterminal or terminal symtol S
of a context-free grammar, vhere S is called the original ofi?:
is a diagram consisting of
—~ a [not necessarily] new occurrence of the sjmbol S5, where the occurrence
of S is called the origin of.}§,
~ with in case S is a terminal symbol nothing but in case S is a nonterminal
symbol:
a by this occurrence of S uniquely determined sequence {resp..uniquely
determined collection of uniquely determined sequences} of [tied] {complete}
derivation trees, that is to say
for a derivation rule with lefthand side S cne such tree for
consecutively, say from left to right, every symbol in the righthand
side of the derivation rule {and just one such sequence for every
derivation rule with lefthand side S}

(N.B. uniqueness does not imply that sequences are not allowed to coincide).

&2,

-~

. Bxamplesr

L4
. oo R) -
We denote the sequences {of dirzect components -g; » see 5.3.) ofi} schematically

. i . .
by - | ,x-rllere«j_)_.L is the origin ofJ‘-ji or a reference "l_'l __’" to
e]
l_; ﬂ L/’/
ALl 0T ——

Let a grammer be given by Z - aZb, 7 > c

a) then some ~l§'! % JQ" 2
. T i
not-tied a7 b ! a 7 b
derivation trees for Z are: " a % ! ' c '
I p— /
b) and the \8: 7
. i 7 i
not-tied a Z\\E‘- c
complete der. tree Ma /%:*gj rc‘
for % is: —=1

[c) and some 18

tied
complete der. trees

for 7 are:

5.3.

5.3.

Definitions

For a [tied] {complete} derivation Lree;g:

A (left most/right most) direct component

is every (left most/right most) element [ron the sequence{s} a=z mentioned
in 5.2.)

A (left most/right most) component

is the treejgitself, and
every (left most/right most) component of any (left most/right most)
direct component ofﬂ3.

(Directly) successivz are two direct components U and V

if U and V are elements of {one of} the sequence{s} mentioned in 5.2. and
V is some (resp. the) sequence element following U.

(Directly) siccessive are two components X and Y

if there are two direct components U and V of a component of‘js,
such that
U and V are (directly) successive and

X is (right most) component of U and Y is (left most) component of V.

Examples

We will denote the components by their origins. Refering to example 5.2.*

and restricting to the components which are occurrences of terminal symbols,

we can state forjg that

~ the uppermost a is left most component and the remaining a's are directly
successive to the a occurring one level higher.

Analogously for the b's.

- the uppermost c is both left most and right most comp., and the remaining
c's are directly successive to the a occurring one level higher and are
directly succeeded by the b occurring one level higher

[and fork) , ‘that

- the a is both left most comp. and direct successor of itself. Analogously for b.

- the c is both left most and right most comp., and is direct successor of

the a and is directly succeeded by the b.]

5.k,

5.k,

5.5.

5.6.

Definitions

A (direct) prodiction

is a sequence of directly successive (direct) components
jﬁ;...;?& ofﬁﬂ, such that?z1 andj}n ave respectively a left most and a
right most component ofig.

A Lerminal component

is a component with a terminal symbol as original.

A terminal production

is a production consisting of terminal components.

A sentential form [resp. sentence)

is the sequence of originals of a (términal) preduction.

The Language L(13) ofi}

is the set of sentences ofj}.

We dencte a production with sentential form o by 8 and a compcnent with

original S by 8.

Examples
Refering to 5.2.* , L) = {a" b > 0} [and L(ﬂ1) = {a"cH" i m,n = 0}
and L(,'R.z) = {&"ep" | n,m 2 0 and n = m (mod 2)}].

From the definitions follows immediately the

Theorem

The language generated by a c.f. grammar equals the language of the not-tied
complete derivation tree for (the sentence symbols of) that grammar.

proof is left to the reader.

The definition

of the Inductive Assertion Pattern.d based upon a [tied] complete derivation

treejB and with respect to correctness predicate symbols P. and P reads:

Let {P]. T be a collection of new predicate symbols whlch are leectlvely

assoclated W1th the terminal components of the tree‘3

Then.§ consists of the following assertions

- for directly successive terminal compcnents A and A (with sssociated
predicatedsymbols p and p') the inclusion p; A c A; p'

- for left most and right most terminal comporents A and A (with predicate

symbols p and p') the inclusions Pinsz P resp. p';A' c A'; Pex

. The characterization theorem

In the sequal

—
. . . . f
- we let AQbe an ind. ass. patteirn Laced upon some [tied] complete der. tree AU

- and we let P be any program scheme with asscciated context-free grammar G

- and ¢(..) is an abbreviation of D, 55

[Note

thelr

Cee Pex

that henceforthiiB need not be related to G; we want to investigate

characterizing power and therefore they must be unrelated entities].

The essential proof - without employing Scott's Induction Rule - follows in the

. Main lemma

(1) 2 Few®)

(ii)

(1ii)

proof
(i)

for any scheme T

LQ‘ZE(T) implies k= T ¢ L(B)

eL®))E 4

(*: promxided that the pred. symbols Pi(i € I) in 4 are conveniently

interpreted).

Let ¢ be any interpretation and let T = A1;...;An € LC@).

Then there are directly successive terminal components A

>)

TEREEEEN
inzg, of which A1 and An are left most and right most ones.

ant i i €
Consequently the inclusions P., =Py and pl,Al c Al,pl+1 for
c An;pex belong to.4. From the validity

i=1,...,n~1 and pn;An
of A under interpretation ¢ there follows consecutively

for i = 0,1,...,n-1 the validity under c of

pin;A1;...;Ai c A1;"';Ai;pi+1 S0
in;A1;"';Ai;Ai+1 c A1;...;in;pi+1;Ai+1 so according to egf\
Pindhys--3AA S A AL 5D
where for i = n+1 P = Poyt So
AL Fﬁ P; T S Tip,, for any T ¢ L(B), so also

ﬁ EU(Pin;T) EU(P},QQ'GDA)the union takeu over all T € L(LB),
A = Pin;(UT) S Rgs (Ut)pQ.E.D.

CA

, ¥
L3

{.

e
3 d

-1~

0
) € c¢(T), then we have to show

Let ¢ be any irterpretation, we show TE T c LGB); Thus let x,. and

Yo be arbitrary elements in Dom(c) with (x
)

(xo,rfo) € (L)),

Consider the premiss under the particular interpretation c', obtained

0o

form ¢ merely by changing or defining the interpretations of the predicate

symbols_pin,pey and {pi}. (Because they do not occurr in 7 and L(f3)

1 € I.
we have ¢(T) = ¢'(T) and c(L(J)) = ' (L(B)).)
)

M

Informally, we give Pine pex’ pi(i € I) the meaning that holds true for thosa
arguments x wnich result from input Xy end a computation by the successive

. .- . .]
A <G4, 1 (which occurr as an initial seguent of a sentence in the treel))
i-

e
u; to, but not including, the symbol Ai with which the predicate symbol is
assocliated. Here in we consider P and Pox to be associated with an
imaginary begin snd ernd rrarker of sentences ofi3.

Formally the definition reads

(x,x) e c'(p) “2.p there are directly successive terminal components

- -~ ~ . - -~ - .
A1, .,Ai 1n19 such that A1 1s left most component and
(xo,x) € c(A1;...;Ai_1) and p is associated with Ai.
- 1 =
(x,x) € e'(p;) 35 X = xg
(x,x) ¢ c'(pex) “For (xo,x) € c(A1;...;An) for some terminal producticn

-~

A1;...;Kn ofi3.
It is now easy to verify the validity of.9 under c':
-~ if p; A ¢ A; p' belongs to.d, then p and p' are associated with directly
successive terminal components K, A'. So from (x,y) € c'(p3A)
it follows that (x,y) e c'(A) and (xo,x) € c(A1;...;Ai_1) for some
A, = A,

1271
c(A1;...;Ai),

sequence of directly successive terminal components A1""’Ai~

» So we have (x,y) e c'(A) and (xo,y) € c(A1;...;Ai_1);c(Ai) =
i.e. (x,y) € c'(A:p").

- if P, < b belongs tos?, then trivial

- if p3A ¢ Aipex is in/4, then analogously to the first case.

In

So according to the premiss of the lemma pin;T c Ty pexholds under c'.
We had assumed (xo,yo) € ¢(T) so that (xo,yo) € c'(pin;T) holds, toco. So
with the inclusion just derived it follows that (xo,yo) € c'(T;pex) and
in particular (yo,yo) € C(pex)' By definition this means (xo,yo) € c{1)

for some sentence T ¢ L(I3), hence (xo,yo) e ¢(L(D)). Q.E.M.

(iii) The convenient interpretation of the pred. symhols in.7 1is the following:

let ¢ be given for all symbols except for the pi(i € I}, then

(x,x) € c(p) For there i1s some %, in Dom(c) such that
F ot
(:.,%) £ c(p. 1Ay ..3A.) for an initial segment
0 "1in 1-1 :
A1;...;A. of some sontence oqu where p ic associzated
i

with Ki'
Now supposeﬁ?(L(E)) is valid under some c, then it is easy to verify
the validity of the assertions in.¥ under c with the cenvenient

hmummwtmnfM“Wepi(ieIh
for P;, € P and ;A < A;p! ind it is straightforvard, and

for p;A c A;pex we argue as follows: let (x,y) ¢ c(p;A) then by

definition (xo,x) € c(pin;A1;...;An_1
and p is associated with A, so (xo,y) € c(pin;A1;..
sentence of L{3), hence by the assumpticn of the validity of E{(L(/3))

) and (x,y) ¢ C(Ar) where An = A

.;Ar) for some
1

under ¢ we get (xo,y) € c(A1;...;An;pex). So both (x,y) € c(A) and

(y,y) € 9(2 X) hold , hence (x,y) ¢ c(A;pex). Q.E.D.

In order to give some conditions in the next lemma and theorem by a syn-
tactical rather than a semantical inclusion, we need the following

6.2. Lemma

* . . cn
For languages L1 and L2 = VT : FL1 [L2 1T and only if L1 < L2.
proof
From right to left trivial. From left to right:let T ¢ L1, say T = A1;...;An,
then we have to show T ¢ L2. Consider the lefthand side with a special
interpretation ¢ ("Herbrand") as follows: Dom(c) = VT* i.e. the strings
over the symbols A, and C(Ai) given by (x,y) e c(Ai) +gef*x;Ai zy
(note that x3A; is the concatenation of the string x ¢ Vip with the

*)

symbol Ai € VT). The lefthand side states that for arbitrary x and y in VT
(x,y) € c(T) implies (x,y) € c(1') for some T' « L2. But (x,y) e c(1")

if and only if x3;T' Sy, so with x;T =y we get T = T' ¢ L2.

6.3.

6.k.

= ‘]';',__

Lenma
(1} &) ire L(3) o L(g)
(ii) for any scheme T

A FE(T) inplics Frc p irf L{B) ¢ L(G)
(iii) €(P) .9 irf L(3) < L(G)

(*: provided that the Pi(i ¢ I) in# are conveniently interpreted,

in case we read the equivalence from right to left).

proof
We tacitly apply thecrem h. k. %3P = L(G) and lemma 6.2. where
L, = L{A) and L2 = L(G). ¥1 is an abbreviation of "Main lemma".
(i) substitute P and L(G) for T in M1(ii).

T4 s

note that for all c¢ ¥p,q V relations R1 = R2 on Dom(c):
C(P);R2 [= R2;C(q) - n(P)‘R < RT:c(q) (prove it elementswise).

L(G) < L(B) we maysubstltutc for L(B), in M1(i).

n

Since P

(ii)

4

substitute in the implication L(i) for 7. The premiss of the
P = L(G).
., to ML(31).

consider the lefthand side under the interpretation c¢ of lemma

resulting implication holds, see ML(i). Hence L(®) c
)

apply transitivety of {le inclusion, and L(3) c L(G

41

(iii)
6.2., extended with (x,x) e c(pin “Gop X F A (empty string) and

(x,x) € c() <~ A for some sentence of L(G) ana

def 1"'.
for the pi(l ¢ I) in/4 anything, for instance the convenient

X = A

interpretation as indicated in M1(iii). By the choice of c,
E(L(G)) so¥ (P) is valid vnder c. Hence according to the
lefthand side,.? too. The validity of €(L(B)) under c¢ follows
from M1(i) and this implies L(J) € L(G) by the choice of c.
&: if L(B) < L{G) then the validity of {(P) under ¢ implies the
valldlty oi‘t(I&jD) under c, c.fr (i)f& . Now apply M1(iii).

Characterization theorem

Any of the following three characterizations holds if and only if L(&) = L(G):
(i) for any scheme T

e Ff(T) if and only if P is an extension of 7, i.e. F=T c P
(ii) for any fixed point T of the scheme P

d3f=€(T) if and only if T is the minimal fixed point of P, i.e. F,T = P.

(iii) F:E(P) is a "complete" proofrule for assertions about P.

6.5.

o

rreof
f .

Suppose LCS) = 0(8), i.c¢. beth L(BY ¢ L(G) and L(B) > L(G). Then
¢

nu

")

[e
(1) = :follows from lewma (6.3.ii).¢=: follows from lemma (6.3.1)

coether with the remark in the proof of (6.3.i¢=).

—

(i1) It is proved {scc[I))that P is the minimal fixed point, i.e. _
F-E’g 7 for arbitrary fixed point T of the scheme P. This together
with (i) completes the proof.

(1ii) Jemma (6.3.i) states the justification of the proof rule.
Suppose that some correctness assertion ¥ (P) is valid under scme
interpretation c, then (6.3.111) states that FZ*LQ holds, hence
the premiss of the proof rule.? Fﬁ “(P) is valid. Thus € (P)
could have been obtained by application of the proof rule.

Suppose that either (i) or (ii) or (iii) holds. We show L(Z) = L(G).

Bach of (i)/(i1)/(iii) implies the lefthand sides of both lermma {(6.3.i)

and lemma (6.3.ii/ii/iii). Hence both L(B) 2 L(G) and L(B) < L(6).

HJ

" RRTTTe——
Conclusion. In order that the Inductive Assertion Pattern.? - based upon
some [tied] complete derivation treel3 - characterizes the scheme P
- vith associated c.f. grammar G -, we have to chﬁoseis such thai
L(7) = L(G). This equality is easily achieved when we choose ! as the
not—tied complete derivation tree for (the sentence symbol of) the grammar
G . See theorem 5.5. But then.4 is infinite as soon as P contains a
recursive procedure. This is unsatisfactory, the more so as the vhile
statement can beconsidered as avrecursive procedure and the only assertion
of Hoare's proof rule characterizes the while statement.
The question arises vhether we cannot define a more economic pattern .
We can achieve finiteness by tying the underlying treejg so that we get
a finite diagram. This possibility is achieved by the additions between

the square brackets [and] in the definitions of section 5.

[Please continue recading at 6.6] The reader who has skipped the additicns

may now read the complelte text from 5.1. onwards,

[

]
6.6. Now we give the conditions for G such that.) can be chosen finite and
o) still characterizes P

Iinitencss ‘heoren

‘R, hence.7, can be chosen Tinite with L(B) = L(g)

if and only if L(G) is regular (and then we say P is regular).

4 is finite precisely when 8 is finite (in the number of occurrences

of terminal symbols). Let. be finite and L(B) = L(¢). We define a

non deterministic finite automaton vhich accepts L{;}), by considering j%
as such. The input symbols are the originals of iterminal components,
i.e. AT The states are the origins of the *=rminal components of J

and also the origin of J) itself. The initial state is the origin of
and the final states are.the origins of rightmost terminal components
of 4. From a state, i.e. the ofigin of a terminal component,transitions
are possible to each origin of a directly successive terminal component
by the input"&9bol which is the original of that component.

Clearly L{/}) is the language accepted by the automaton, so L(3) = L(g)
is regular. *) '
Conversely,.let L(g) be regular. Consider a regular grammar G' with

L(G') = L(G). We give a construction for a finite tied complete derivation
tree) for the sentence symbol Po' of G' such that L{Z3) = L(G').

Construct ¢ inductively according tc defintion 5.2. yith respect to

G', beginning with a new occurrence of PO' as the origin and further
choosing already existing occurrences of nonterminal symbols for the origins
of direct comporents, whenever it is possible and otherwise a new occur-
rence. The tree.d thus consitructed is finite.

By induction on the lenght of the derivations it is easy to prove that

for every derivation Po'=%f o in G' there is a production O inB which

has the sentencial form o. Hence L(G') < L{%3).

Also L(G') 2 L(@) nholds. For due to the regularity of G' the components

ﬁ, N any nonterminal symboi, have no direct successive components. So

-

the productions of:B are of the form K1;...;An; ﬁ or K1;.

the regularity and the definition of direct successiveness it follows

«.3A . From
n

that in those productions Kn;ﬁ resp. Kn is the sequence of direct compo-
nents of some ﬁ' such that E1;...;ﬁn~1;ﬁ' is a production. And hence

N' > An;N resp. N' - An is in G'. Repeatedly applying this step renders
a derivation in G' for every (terminal) production, and hence for every

sentence ofi}. Q.E.D.

%) footnote see.last page

0,5 i Je

6.7. We have given a very general definiticn of tying trees. In 6.6. above
we uscd a particular case: very straightforward tying whenever possible
(for nonterminals). By choosing a convenlcnt way of tying, we can get all
introductory patterns of [I, section 4.1.] which appeared to fail.
There sone patterns were proposed as characterizing a recursive procedure P,
but whercas b@iiﬁ(P) was true, even the implication'%ﬁl‘f(]ﬂ implies F T c P"
vas not. The cause is now clear: the language L{J) of the tied tree on which
A was based, did not equal the language L(G-o0f-P) generated by the grammar
G-oT-P associated with the scheme P.
In gencral LCB‘) > L(G') does hold for a %re=2' set up for a grammar G'
(proof: left to the reader). So it follows from the Mainlemma and lemma 6.2,
that we can find counter examples T for the above implication as sentenccs
TeL(B) — L(G-of-P), or even via theorem 4.kh. as program schemes T of
vhich the assoclated grammar G-of-T produces a languages with L(G-of-P) ;,_*:/L(é'.,t ’/'j,_
L(G-of-T) c I#=5m— 4

lMoreover, each counter example should - satisfy this requirement.

Hn

T. Example/Application: the while statement characterization

(@)

The while statement)y =while B do A can be considered as recursively
defined by p&=3B3A; uy 1B.
The grammar assoclated to W is given by

W (ByA;W u TB) (ByA; 7 ul1B) + ByA3 ¥ (B;A3F u 1B) > B

An equivalent grammar in regular form is /////’ /\\\
Ve
W >ByA W W 1B / ////
/7
: ed .G -0 6 o : /. .
The tree.ﬁ constructed a9301a1ng to 0.6. looks like (:B L MR
The pattern .4 based upon £, is § v
—

according to definition 5.2.:

Q.
v pil’l = pB PB:B = BaPA pA’A c A:pB PA:A c A:p";B

D Pyp Pqps B c TB;pex

in

in
By contracting the 2rd + 3rd and the 2nd + hth inclusion we can eliminate

Py- Thus we obtain the equivalcné) pattern
A' Py Spp DRiBiA S BiAsp, ppsBiA € KA
1B < IBsp,

»Pp

In

Pin = PTB ij

Because B and 1B must be interpreted as "predicate relations', ii is easy

to verify by elementswise consideration that. ' is equivaleng) to
I .
WP, SDp PEsBiA c Aipy poBiA c A
. . ;1B
in E'P]B ij’ = Poy
And finally, by suitable substitutions for the predicate symbols

P1p

b
B
and p7B,respectively for the neW'p1,;Q" is easily demonstrated to b=
R *
equivalent ® to
ZARRE Pi, SP; Py3BsA € Asp,
P151B = pex
According to theorem 6.6. and 6.4. we have that

(i) for any scheme T

Ugllltz pin;T c T;pex if and only if|=T e W
(ii) for any scheme T which satisfies 7 = ByA;T u B
111 . . . v 3 1=
A = p, 3T € Tsp if and only if 7 = W

M Fr it - T .
(iii) both.9 F.pin,W < W:Pex
. . RN
and pin,W < W’Pex F?ﬁ

*).

righthand side are conveniently interpreted).

in the senseJ$1F;Ab andqQo Fi£% (x: provided the predicate symbols in the

The while statcment characterizalicn given above may secm Lo differ Trou
the characterization mentioned in thz introauction 1.1.
lovever, the latter can be formuloted as
(®®) (i) ror any scheme T
A © i:‘-'p:,Tg Tip:1B il and only if i'- T'eclW
(ii) for any scheme T which satisfiesltﬂ’ = B3A;T uB

fjo . .
v F:p;T < T;p3B it and only if[zT = W

(1ii) both;?o = psW c Wyp3IB
and riW ¢ Mg for ¢ p, K v Bca
where

HO = {p;B3A < A;pl.

Now, the onl:r difference is that a suitable instance cf the acditional
rule (see 1.1) "R=)P, P{r}s, 5=3Q implies R{T}Q"

js already implemented in version (€), whereas in version (&&)

it is only implemented in the second part of (iii). The eguivalence
of (&) and (&%) can easily be demonstrated by suiiable substitutions

for the predicate symbols.

It is the very first clauze of der. 5.4, which induccs o conteol mecha—
nism for the production of sentences that con be realized Dy somz finite
automaton, namely the one just constructed. This in corlrast with a variaunt,
like:

- o)
a production m of)
is - the tree B itself and

.

- every concatenation T .;ﬂn ¢ productions Wj of/Ji where

15
'@1""’Bn is a sequence of direct components ofj%, as mentioned
in 5.2.
The control mechanism induced by this clause is rcalized by a push-dcua
automaton. With such a definition.A produces precisly L(G) where G ic
the underlying granmar, even in the case of tying.
We did not choose this latter variant, because the essential rrool,

Mainlemms (6.1.ii and iii), is based upcn the Tormer contreol mecianism.

Refenrences

(1] de Bakker, Meertens:

Simple recursive program schemes and inductive assertions

MR142/72 DECEMBER, Math. Centre, Amsterdam

The same program schemes.as used above occurr in
LITIJ de Bakker:

Recusive procedures

Math. Centre Tracts 24, Math. Centre, Amsierdam 1971
[IIT]de Bakker, de Roever:

A calculus for recursive program schemes

Proc. IRIA Symp. on Automata, Form. Lang., Programming,
North Holland, Amsterdam (ed. Nivat).

[IV] Hoare:
An axiomatic basis for computer programming, C.ACM 12 pp.576-583(1969)

@m.,«a,.- e Balihos JW & Neerlews, 612, :
Ou Yhe tornpltencs) fla st ar. tuetlser
o oppeat .

