Sequence comprehension for XQuery’s FLWOR expression

Maarten Fokkinga

Version of May 9, 2003, 15:14

Abstract. In XQuery the FLWOR expression is a kind of comprehension for sequences. It differs from sequence comprehensions as found in functional programming languages mainly in the presence of an order by clause. We define a sequence expression with an order by clause that is suitable to express the semantics of XQuery’s FLWOR expressions.

1 Introduction. In XQuery the FLWOR expression constructs a sequence out of given sequences. It resembles the set comprehension ‘{... | ...}’ and the related sequence comprehension in functional programming languages. There is, however, one striking difference: the order by clause. This clause uses the bound variable, and has an overall effect on the order of the resulting sequence. We define a sequence expression with an order by clause that is suitable to express the semantics of XQuery’s FLWOR expressions. We do so with particular effort to define the semantics with well-known, general purpose operations; in particular, a sequence re-arranging operation \(\approx \). Wherever possible we use the Z notation to express mathematics. (So, a sequence \(xs \) over a set \(S \) is a function from 1 . . . \(#xs\) to \(S \) where the \(i \)th item in the sequence is given by the function application \(xs \cdot i \). Hence, \(\text{dom} xs \) is the set 1 . . . \(#xs\) and \(\text{ran} xs \) is the set of items in \(xs \). Brackets \(⟨ \) and \(⟩ \) are used to display sequences.)

2 The FLWOR expression. The basic form of the FLWOR expression is (discarding the ‘L’ part for the let clause):

\[
\text{for } \$x \text{ in } xs \\
\text{where } P \\
\text{order by } E \\
\text{return } F
\]

Here, \(xs \) is a sequence, \(P \) is a predicate expression, \(E \) is an expression evaluating to a value in an ordered set, and \(F \) is a value expression. All of \(P \), \(E \), and \(F \) may contain occurrences of \(\$x \). The entire expression denotes a sequence that is obtained as follows:

Consider sequence \(xs \).
Let \(x \) (read: \(\$x \)) range over the items in \(xs \), in the order given by \(xs \).
Discard the \(x \)’s for which \(P \) evaluates to false.
Re-arrange the resulting sequence in such a way that later items have larger \(E \)-values, keeping the original order where the \(E \)-values are equal.
For each value \(x \) in the sequence thus obtained, put the \(F \)-value in the result sequence.

We shall define a sequence comprehension ‘\(\langle x :: xs \mid P \equiv E \bullet F \rangle \)’ that exactly equals the meaning of the above FLWOR expression. Here, symbols ‘::’, ‘|’, ‘\(\equiv \)’, ‘\(\bullet \)’ are syntactic separators.
3 Ordering. First some auxiliary order concepts that are interesting by themselves.

- A pre-order \(\preceq_f \) constructed out of a (pre-)order \(\preceq \):
 \[
 x \preceq_f y \iff f(x) \preceq f(y)
 \]
 Equivalently, \(\preceq_f \) equals \(f \circ (\preceq) \circ f^{-1} \). Pre-order \(\preceq_f \) is an order if \(\preceq \) is so and \(f \) is injective. Order \(\preceq_f \) is total if \(\preceq \) is so and \(f \) is injective. Note also that \((\preceq_f)_g \) equals \(\preceq_{fog} \).

- The combination of two pre-orders with priority for the first one. Let \(\preceq_1 \) and \(\preceq_2 \) be pre-orders over \(X \). Then \((\preceq_1) \oplus (\preceq_2) \) is the pre-order \(\preceq \) defined by:
 \[
 x \preceq y \iff \begin{cases} x \preceq_1 y & \text{if } x, y \text{ are unrelated or equal in the first order,} \\ x \preceq_2 y & \text{otherwise.} \end{cases}
 \]
 In other words, \(x \) is at most \(y \) in the composite order if \(x \) is smaller than \(y \) in the first order, and only if \(x \) and \(y \) are unrelated or equal in the first order, then the second order comes into play. Note that if the first order is total, then the second doesn’t matter; and if the second order is total then so is the composite order. Note also that \((\preceq_{fsi}) \oplus (\preceq_{snd}) \) is the lexicographic order on tuples. A variation is to use two orders: \((\preceq_{fsi}) \oplus (\preceq_{snd}) \); this one turns up in the sequel.

- The predicate that a sequence is totally (pre-)ordered with respect to a pre-order \(\preceq \):
 \[
 (\preceq) \text{ orders } xs \iff \forall i, j : \text{dom } xs \mid i \leq j \Rightarrow xs(i) \preceq xs(j)
 \]
 That is, “going in \(xs \) to a larger index yields a larger item”. We might also say that “\(xs \) is ascending with respect to \(\preceq \)”.

Using these concepts we define the ordering operation \(\bowtie \) that re-arranges a sequence. Let \(\preceq \) be a pre-order on \(\text{ran } xs \). Then \(\text{ran } xs \bowtie (\preceq) \) is an ordered re-arrangement of \(xs \) such that \(\preceq \) is obeyed where applicable, and the original order is preserved otherwise:

\[
\text{ran } xs \bowtie (\preceq) = \text{ Let } ys \text{ be equal to } xs \text{ except that each item is tupled with its index: } y = \{ i : \text{dom } xs \mid i \mapsto (xs(i), i) \}.
\]

Let \(zs \) be the uniquely determined sequence such that:

\[
zs \text{ is a permutation of } ys, \text{ and } ((\preceq_{fsi}) \oplus (\preceq_{snd})) \text{ orders } zs.
\]

Take as result: \(\text{fst} \circ zs \) (discarding the added indexes).

4 Sequence comprehension with an order by clause. Let \(xs \) be a sequence. Let \(P \) be a predicate, \(E \) and \(F \) be expressions; these may contain free occurrences of \(x \). Then \(\langle x :: xs \mid P \bowtie E \bullet F \rangle \) is our syntax for sequence comprehension. To define the semantics, assume without loss of generality that \(i \) doesn’t occur free in \(P, E, \) or \(F \). Then:

\[
\langle x :: xs \mid P \bowtie E \bullet F \rangle = \text{xs} \mid p \bowtie (\preceq_e) \bowtie f
\]

where \(p = (\lambda x : \text{ran } xs \bullet P) \)

\[e = (\lambda x : \text{ran } xs \bullet E) \]

\[f = (\lambda x : \text{ran } xs \bullet F) \]

Here we have used the \(Z \) notation for filtering of a sequence \(xs \) by a predicate \(p \), namely: \(xs \mid p \). Moreover, \(xs \bowtie f = f \circ xs = (\lambda i : \text{dom } xs \bullet f(xs(i))) \) = “map” \(f \) over \(xs \).

We leave it as an exercise for the reader to define the/a semantics of \(\langle x :: xs; y :: ys \mid \ldots \rangle \).