
Formal semantics of ERDs
Maarten Fokkinga, Verion of 4th of Sept, 2001

The meaning of an ERD. The notations introduced in the book Design Methods for Re-
active Systems [2] are meant to describe part of reality, namely the subject domain of the SuD.
So, the principal interpretation of the notational ingredients consists of individuals, concepts,
and properties in the real world; the interpretation is inherently informal and subjective! Nev-
ertheless, the notation also has an interpretation of its own, in abstract mathematical terms
rather than concrete real world terms. The existence of such an interpretation is important,
because it enables us to decide various questions about the notation without resorting to in-
formal (hence subjective) arguments. For example, without knowing the intended, principal
interpretation into the real world, we can decide the equivalence of the following two ERDs:

E1 E1

R

E2 R E2
11

11

1 1

In this note we give a “translation” of an ERD to its formal semantics. It will turn out
that the formal semantics takes a lot more symbols and piece of paper than the ERD itself.
This indicates that ERDs are a concise notation; giving only the mathematical formulas in-
stead of a graphical ERD would be unpractical. The mathematical semantics comes into play
only to give rigorous proofs of theorems about ERDs (such as verifications of checking and
manipulations by tools!), or to explain dark corners of the principal interpretation of ERDs.

Example ERD. We shall not formally translate ERDs into the mathematical semantics,
but instead translate by hand one typical example. Since the mathematical semantics only de-
pends on the ERD and not on the intended, principal interpretation, we have rather schematic
names. Here is the example:

dc dc

E6

f

a

E1

R1

0..1
yx

b

E4 E5

2..4 R2E2

a

E3

c

d
e

e

a

Notice that there occur entities, relations, attributes (whose names are local to the entity in
which they occur), roles, various cardinality properties, an association relation, two multiple
specializations, one multiple generalization, and static and dynamic dc-properties. So, much
of the ERD notation does occur in the example. As an example illustration of the use of the

1



mathematical semantics, we shall derive a surprising property in the corollary below.

Abstracting from reality. Before delving into details, let us first consider the informal
but principal interpretation of the given ERD and try and abstract from real world aspect
and replace them by mathematical artifacts instead.

The ERD is about extensions and extents, and attributes and roles. Extensions and
extents are sets of real world identities. We shall abstract from real world identities, and
postulate a set Id instead (whose members we call identities, of course). We shall also abstract
from the values that attributes can take, and postulate a set Val of values. A role is nothing
but an identity-valued attribute; no new concepts are involved here. So far for the real world
concepts involved in the principal interpretation of the ERD; in the formal semantics, the
identities and values are postulated, and then extensions and extents are sets of identities
just as in the real world, and attributes and roles are functions, mapping identities to values
and identities, respectively, just as in the real world.

The core of the interpretation of the ERD is a characterization of the possible states of
the real world. For example, according to the dynamic specialization part in the ERD, each
currently existing E3 instance is either an E5 instance or an E6 instance. Thus the ERD
characterizes possible states of the world — as far as extensions, extents, attribute values
and roles are concerned. The formal semantics will do the same; after the (very simple!)
postulations of Id and Val it gives one (huge!) formula, ‘State’, telling on the one hand what
components a state has (27 components for the example ERD, as we shall see), and on the
other hand what properties the components have (in order to be a proper state).

To be complete, the formal semantics must also define the way in which the state may
change. For example, may it happen that an identity in one extension becomes a member
in another extension when the state changes? Therefore, the formal semantics also gives
a property, ‘∆State’, for pairs of states, that characterizes possible state changes. In this
characterization we may also include additional dynamic properties that cannot be expressed
in conventional ERD notation.

Thus the formal semantics consists of postulations of Id and Val , and the two formulas
State and ∆State.

Our notation. The formal semantics we give is completely formulated in terms of conven-
tional set theory and predicate logic. We shall use the Z notation [1] for this purpose. Apart
from being a quite systematic notation for sets and functions (containing some unconven-
tional but convenient squiggles, and accompanied with several tools such as type-checking
and theorem proving), the Z notation also contains the schema notation. A schema is noth-
ing but an x -tuple of things, together with constraining properties; State and ∆State will be
schema’s. The related schema manipulations facilitate a far going modularization of the for-
mulas. Modularity means that the author can group together precisely those (sub)formulas
that he considers to belong together. Using modularity, we can present State and ∆State
in understandable little bits (little schema’s), while being formal at the same time (so that
type-checking and other tools can be applied)!

In order to make the mathematical constructions very clear, and in order not to be dis-
tracted by the Z specific schema manipulations, we first present each of State and ∆State
as one huge schema. We call this the monolithic formulation. Later on we will show how a
modular approach looks like.

2



The monolithic formulation

Postulation. There is one big universe Id of identities, and one set Val of attribute values:

[Id ,Val ]

Thus Id and Val are sets of which we do not know anything except that they exist; regarding
type checking of the Z notation they function as a new basic types. However, an identity of a
relation should be a pair of identities, or at least should be interpretable as such. Therefore we
specify that pairs of identities can be identified with single identities via an injective function,
called pair :

pair : Id × Id � Id

State. We give the characterization of ‘state’ in one huge schema. The upper part contains
27 declarations, giving the 27 components of a state. These are, in order, the extensions and
extents (subsets of Id) for all the entities and relations, and the attribute and role functions:

State
E1 exn, . . . , E6 exn, R1 exn, R2 exn : P Id 8 extensions
E1 ext , . . . , E6 ext , R1 ext , R2 ext : P Id 8 extents
a E1, a R1, . . . , f E6 : Id 7→ Val 9 attributes
x E3, y E2 : Id 7→ Id 2 roles

properties

Notice that attribute function a E1 is declared to be a partial function from Id to Val ,
although its domain is precisely E1 ext . The reason for doing so is that, in Z, the scope of
the declarations is only the lower part of the schema, so we cannot declare in the upper part
that a E1 has type E1 ext → Val . Instead we shall add such properties in the lower part of
the schema.

The lower part of the schema contains the properties that should hold of the components
in order that they form a proper ‘state’. We proceed in arbitrary order. (In the modular
approach we would definitely bring in more structure into this set of properties.) First we
have that the extents form a subset of the extensions:

E1 ext ⊆ E1 exn; . . . ; E6 ext ⊆ E6 exn; R1 ext ⊆ R1 exn; R2 ext ⊆ R2 exn

Secondly, the relation extensions are isomorphic to the Cartesian products of the participating
entity extensions:

pair ∈ E1 exn × E2 exn �→ R1 exn
pair ∈ E2 exn × E3 exn �→ R2 exn

So, if e1, e2 are identities for E1,E2, then pair(e1, e2) is the identity in R1 exn representing
the fact that e1 and e2 are related by R1. The multiplicity properties further restrict the
relation extents:

∀ e1 : E1 ext • #{e2 : E2 ext | pair(e1, e2) ∈ R1 ext} ∈ 2 . . 4
∀ e2 : E2 ext • #{e1 : E1 ext | pair(e1, e2) ∈ R1 ext} ∈ 0 . . 1

3



Next, the attribute functions have the right domain, and the role functions are completely
fixed:

a E1 ∈ E1 ext → Val ; . . . ; f E6 ∈ E6 ext → Val

x E3 = (λ e3 : E3 ext • {e2 : E2 ext | pair(e2, e3) ∈ R2 ext})
y E2 = (λ e2 : E2 ext • {e3 : E3 ext | pair(e2, e3) ∈ R2 ext})

If the ERD had also given the types of the attributes, we could have specified the ranges
or more properties of the attribute functions here as well. Below we will see that attribute
functions of a supertype are also applicable to their subtypes (inheritance). The attribute
functions e in E4 and E5 are completely unrelated.

Finally, we formulate the properties expressed by the static and dynamic dc-specialization:

〈E4 exn,E5 exn〉partitions R1 exn ∧ E4 ext ∪ E5 ext ⊆ R1 ext

E5 exn = E6 exn = E3 exn ∧ 〈E5 ext , E6 ext〉 partitions E3 ext

It follows that E4 ext ⊆ R1 ext = dom a R1, so a R1 is applicable to elements from E4 ext
as well: inheritance.

This completes schema State.

Corollary. To show the use of the formal semantics in order to explore dark corners of
the informal ERD semantics, we give here a purely logical (mathematical, formal) reasoning
within State and interpret the outcome back into reality, with a surprising result.

Within the lower part of State it follows from the properties dealing with specializa-
tion that E3 exn = E5 exn ⊆ R1 exn. Moreover, there is also a formula that R1 is a
relation between E1 and E2, namely pair ∈ E1 exn × E2 exn �→ R1 exn. From these
two properties it follows that E3 exn is isomorphic to a subset of E1 exn × E2 exn, so
that we may say that E3 is a specialization of an association relation between E1 and E2.
Apparently the author of the ERD has forgotten to draw that in the diagram, or considered
that information not worth to be drawn! Or he has made a mistake, brought to light by
the formal semantics. . .

Opmerking. Tot nu toe heb ik altijd gedacht dat extensions disjunct zijn tenzij sprake is van een
specialisatie (zoals bij E4, E5, E6). Dat zou voor het voorbeeld ERD betekenen:

disjoint〈E1 exn, E2 exn, E3 exn, R1 exn〉

Maar bij nader inzien blijkt zo’n disjointness nergens genoemd te worden in Roel’s boek, en is boven-
staande eigenschap inconsistent met de eigenschap E3 exn ⊆ R1 exn die elders in State afleidbaar is.
Toch handig, om een formele semantiek te hebben die dit soort problemen/misverstanden bespreekbaar
maakt.

Opmerking. Als we geformuleerd hadden dat relatie-extensies niet slechts isomorf zijn met, maar
zelfs gelijk zijn aan cartesische producten, dan hadden we ook ‘E4 exn, E5 exn, E3 exn :

�
Id ’ moeten

wijzigen in de eigenschap dat E4 exn, E5 exn, E3 exn deelverzameling zijn van cartesische producten;
want anders resulteert er een inconsistentie. De semantiek die wij nu geven (met isomorfie) stelt ons
in staat om “blindelings” te werk te gaan en de conjunctie te nemen van alle eigenschappen die we
stipuleren (zonder sommige te moeten herroepen).

4



State change. Now we want to formulate which pairs of states form a valid change in the
world described by the given ERD. Denoting the components of an “old” state by exactly the
same identifiers as in schema State, and denoting the components of a “new” state by the
corresponding primed identifiers, the formula characterising the valid state changes has the
following form (where ‘∆State’ is a single identifier):

∆State
all declarations of schema State
all declarations of schema State with a prime at each declared identifier

all properties of schema State
all properties of schema State with a prime at each declared identifier
additional properties

This is a huge schema indeed. Making a modest use of the schema notations of Z, we can
write a much shorter but equivalent schema as follows:

∆State
State; State ′

additional properties

So, within the upper part there occur only two identifiers! It remains to give the additional
properties. Actually, there is only one, namely that the extensions stay the same:

E1 exn = E1 exn ′; . . . ; E6 exn = E6 exn ′; R1 exn = R1 exn ′; R2 exn = R2 exn ′

By the way, the sets Id and Val have been postulated, and are therefore fixed throughout
this discussion, and similarly for the pairing function pair .

Special state changes. For one reason or another, we might come across the need to
characterize special state changes, that is, state changes that at least satisfy the properties
of ∆State (thus being valid changes) and moreover satisfy another property of interest. For
example, consider the property that relation R1 only “gets larger”. These state changes are
characterized by the following schema:

Growing State
∆State

R1 ext ⊆ R1 ext ′

The informal suggestion is ambiguous; a different formalization of the extra property is:

#R1 ext ⊆ #R1 ext ′

The modular approach

Since our goal was to show how, mathematically, a formal semantics of ERDs would look like,
and not to present the beauty of the Z notation, we will be very brief here.

5



In the modular approach we define schemas for different aspects and then combine them,
mainly by logical conjunction, into the desired schema State. In this way, State is a schema
expression in the Z notation that is equivalent to schema State given earlier.

Here are some examples of the little schemas that we might define:

For each entity and relation a schema to formalize the type
(the attributes and their possible values).

For each entity and relation a schema to formalize the extension.
For each entity and relation a schema to formalize the extent and attribute functions.
For each multiplicity property a schema.
For each static and dynamic specialization a schema.
For each comment attached to the ERD a schema.

Some of these refer, in the upper part, to others, like our schema ∆State has State and State ′

in its upper part.
Furthermore, there are some formulas or formula patterns that will occur over and over

again, when formalizing various ERDs. In the Z notation it is possible to write one generic
schema for such a formula pattern, then put that into a library, and use it over and over
again by just referring to it rather than duplicating it.

Conclusion

Although the principal interpretation of ERDs is a property of the real world and thus in-
formal, the ERD notation does have a formal semantics of its own. Such a formal semantics
may help to come to better understanding of some aspects of ERDs, and is almost a necessity
when building tools that manipulate ERDs or assist in such manipulations.

If manipulation of the formal semantics is an additional aim, which will rarely be the case,
then the Z notation is a good choice since it facilitates compact formulation and comes with
a set of tools (type-checkers, theorem provers) that may be beneficial.

References

[1] J.M. Spivey. The Z notation: a reference manual (2nd edition). Prentice Hall Interna-
tional, UK, 1992.

[2] R.J. Wieringa. Design Methods for Reactive Systems — Yourdon, Statemate, and the
UML. University of Twente, Enschede, Netherlands, 2001. To appear.

6


