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This note proposes an approach to a “Theory of Moa” — the completion of which is deemed
worth (and proposed as) a full PhD thesis. The objective of the theory is threefold: first
it should provide ‘insight’ in the principles of Moa (possibly leading to improvements in
the documentation, explanations, and so on), second it should provide a formal framework
to formulate and prove various claims and properties of Moa, and third it should suggest
generalisations (possibly leading to an improved or more general system). In order to achieve
the right level of abstraction and generality, we will use some methods and notions from
category theory; using category theory is not an aim in itself.

A Introduction

1 Monet. Whereas in traditional relational
database applications, data is most often needed
“by rows at a time” (of one person all its at-
tributes), there also exist database applications,
such as datamining and information retrieval, where
data is needed “by entire columns at a time” (of all
persons just one attribute). For such applications
the main-memory database system Monet [3, 4] has
been developed; it is optimised for manipulating
(traversing and aggregating) entire columns at a
time. In fact, Monet has only binary tables, so that
fetching a column is fetching a table (and this is
manipulated entirely in main memory, and stored
consecutively on disk).

2 Moa. Moa [4] is a language (a datamodel, to be
used at the “logical” level in between the “external”
end-user level and the low-level “physical” level of
Monet) for defining data representations that ex-
ploit Monet’s capabilities of efficiently traversing
and aggregating entire columns. (The acronym Moa
stands for Magnum Object Algebra, where Magnum
is/was a Dutch national project in which CWI, UT,
TUE, and UvA participated.) Moa is extensible

in the sense that the user may define new “basic”
structures and their representation in terms of bi-
nary tables, and the system then takes care of ar-
bitrary combinations of those structures. In par-
ticular, the Moa system flattens each nested collec-
tion (set, list, bag) to a single, unnested, collection,
so that nested traversals are exchanged for single
traversals, thus avoiding the famous inefficiency of
nested loops. The combination of Moa with Monet
has been used with surprisingly good performance
in a GIS application [3].

3 Aim. This note proposes an approach to a
“Theory of Moa”; the completion of the theory is
deemed worth (and proposed as) a full PhD the-
sis. The objective of the theory is threefold: first
it should provide ‘insight’ in the principles of Moa
(possibly leading to improvements in the documen-
tation, explanations, and so on), second it should
provide a formal framework to formulate and prove
various claims and properties of Moa, and third it
should suggest generalisations (possibly leading to
an improved or more general system). For the lat-
ter we think of a redo of the optimising rewriter,
the implementation of modules, and possibly some
new value representations. In order to achieve the
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right level of abstraction and generality, we will use
some methods and notions from category theory [2].
Using category theory is not an aim in itself, and
we are ready to work non-categorically where ap-
propriate.

4 Category theory. Category theory is a lan-
guage (consisting of notions and accompanying ax-
ioms and theorems) in which various diverse fields
of mathematics and computing science can be de-
scribed in a uniform way. In order to achieve the
right level of abstraction (that reveals the similari-
ties between seemingly different and unrelated fields
of mathematics or computing science), the language
may feel as a straight-jacket when used for the first
time in one specific field (programming, say). For
example, when describing functional programming,
category theory requires to express oneself entirely
at the function level, not using explicit arguments
and results.

Formulated in a programmers jargon, category
theory has only the following concepts (and we will
adhere to these in the sequel): types (a, b, c . . .) and
typed total functions (f , g , h . . ., typed like f : a →
b), and a composition operation ◦ and specific func-
tions ida : a → a for each type a, such that the
following axioms hold true:

f : a → b ∧ g : b → c ⇒ g ◦ f exists ∧
g ◦ f : a → c

and, whenever the compositions exist (and omitting
the subscripts):

f ◦ (g ◦ h) = (f ◦ g) ◦ h
f ◦ id = f = id ◦ f

All other concepts in category theory must be de-
fined in terms of these concepts (so that conven-
tional concepts might not be recognised easily at
first sight). Note that the concepts of being a ‘mem-
ber’ of a type, and of ‘application’ of a function to
an ‘argument’ do not occur: a, b, c . . . and f , g , h . . .
may be interpreted quite different from the pro-
grammers’ intuition about types and typed total
functions! For example, a, b, c, . . . may be inter-
preted as numbers and f : a → b may be interpreted

as a witness of the fact that a is at most b; then
the implication ‘f : a → b and g : b → c implies
g◦f : a → c’ expresses transitivity of the ordering on
numbers. Many more interpretations are possible.

In the sequel, we will use category theory as a
source of inspiration rather than as an objective in
itself. We shall use the conventional programmer’s
jargon and intuition, but take care not to exceed the
spirit of category theory. Our use of category the-
ory is mainly in the derived concepts it provides (in
particular the notion of structure that we introduce
below). When it comes to proofs of properties, we
will certainly benefit further of our categorical ap-
proach.

B The notion of ‘structure’

5 Notation. Throughout the paper we let
a, b, . . . vary over types and f , g , . . . vary over typed
total functions. For Cartesian product we use the
following notation:

a × b = {x : a, y : b • (x , y)}
f × g = λ(x , y) • (f x , g y)

So f × g , applied to a tuple of type a × b, sub-
jects the a-constituent of the tuple to f and the
b-constituent to g . When f : a → b and g : c → d ,
then f × g : a × c → b × d .
For the type of sets we use the following notation:

Sa = the type of sets like “{x0, . . . , xn−1}”,
where each xi is of type a

Sf = λ {x0, . . . , xn−1} • {f x0, . . . , f xn−1}

So Sf , applied to a set of type Sa, subjects each
a-constituent of the set to f ; some people write Sf
as f ∗ and call it the “map f ”. When f : a → b, then
Sf : Sa → Sb.

6 Structure. Consider, as a motivating exam-
ple, the type a × b (the type of tuples from a and
b) or Sa (the type of sets over a). What property
makes that these types are structured? The answer
is: the existence of a way to manipulate the con-
stituents without changing the structure. For a × b
it is f × g that manipulates the constituents only,
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and for Sa it is Sf that manipulates the constituents
while not affecting the structure. The fact that only
the constituents are affected and not the structure,
is captured by the following property:

(f × g) ◦ (f ′ × g ′) = (f ◦ f ′)× (g ◦ g ′)
ida × idb = ida×b

resp.,
Sf ◦ Sf ′ = S(f ◦ f ′)
S ida = idSa

Thus, a structure not only defines, for given types,
a structured type, but also comes equipped with a
way to manipulate the constituents without chang-
ing the structure. This leads to the following defi-
nition.

A structure F (the categorical term is functor)
consists of a mapping of types and a mapping of
typed total functions, both denoted by the same
name F , satisfying these properties:

a is a type ⇒ F a is a type
f : a → b ⇒ F f : F a → F b

and
F (f ◦ g ◦ · · · ◦ h) = F f ◦ F g ◦ · · · ◦ Fh
F id = id

(The latter line may be considered a special instance
of its preceding line. Written in full the equation
reads: F ida = idFa for all types a.) So, Fa is “the
structured type” built out of values of type a, and
F itself is “the structure”. Function Ff is the func-
tion that subjects every constituent of structured
type Fa to function f thereby resulting in a struc-
tured type Fb. We let F ,G , . . . vary over structures.

Here are some examples of structures:

I the trivial structure:
Ia = a
If = f

II the structure of pairs of equal type:
IIa = a × a
II f = f × f = λ(x , y) • (f x , f y)

S the structure of sets; recall:
Sa = the type of sets {x0, . . . , xn−1}, (xi : a)
S f = λ {x0, . . . , xn−1} • {f x0, . . . , f xn−1}

L the structure of lists:
La = the type of lists [x0, . . . , xn−1], (xi : a)
L f = λ [x0, . . . , xn−1] • [f x0, . . . , f xn−1]

Note that the composition of structure F with struc-
ture G is a structure again: an F -structure of G-
structures. All these example structures are unary;
binary structures also exist, and Cartesian product
is the prime example. For the sake of simplicity
we mainly consider unary structures here (and thus
skip the definition for binary and n-ary structures).

Notation. For structures, we use juxtaposition
for both application to a type and composition with
another structure, and, since F (G a) = (F G)a, we
leave out the parentheses, thus writing F G a. We
also use the section notation from functional pro-
gramming languages: (a×) is a unary structure,
mapping type b to a × b and typed total function
f : b → b′ to ida × f : a × b → a × b ′.1

7 Regular structures. The notion of structure
defined above is very general, maybe too general
to be useful. A less general set of structures are
the ones that are built by composition from some
given elementary structures (like I and ×): the so-
called regular structures. I suspect that regularity
will play an important role in the theory of Moa,
but for simplicity I skip the definition of regular-
ity here. However, below it might be the case that
sometimes we have to restrict ourselves to regular
structures, so that it is valid to decompose them
into compositions of elementary structures.

8 Datatypes. A datatype definition defines not
only constructors (or destructors) for the new type,
but also a structure in the sense explained above.

To illustrate this, consider the following
datatype definition of binary trees with values of
type a in the tips, and constructors tip and join:

1The definition of (a×) can be written as one equation ‘(a×)x = a× x ’ (for both types and functions x ), if we convene to
denote both a type and the identity on that type by the same name. The resulting syntactic ambiguity in ‘F a’ isn’t present
semantically since F ida = idFa .
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datatype Ta with fold has constructors:

tip: a → Ta
join: Ta × Ta → Ta

(Combinator fold is explained in a moment.) This
declaration defines not only constructors tip and
join, but also a structure T: it is implicit in the
declaration that for f : a → b we have Tf : Ta → Tb
with the effect that Tf subjects each tip of an a-tree
to f , thus resulting in a b-tree. Moreover, structure
T is regular. We omit further details.

Combinator fold is the only primitive means to
define inductive functions on Ta. For example, the
sum of all the tips in an int-tree is defined by:

sum = fold (id , +)

Operationally, fold (f ,⊕) applied to a tree replaces
every tip-node by f , and every join-node by ⊕ (and
then evaluates the resulting expression).

(Actually, the datatype of lists L results from
the datatype of trees T by imposing associativity of
join, and the datatype of sets S results from T by
imposing associativity, commutativity and absorp-
tivity of join. Datatypes with equations for the con-
structors also fit into our categorical framework.)

9 Collection. Some structures might be consid-
ered a “collection”, like the structure of sets, S. In
informal explanations about Moa I’ve come across
the notion of collection many times. However, to my
surprise, it turns out in §17 that this notion doesn’t
make much sense; in particular, II is as much a col-
lection as S is.

C The representation of values

The essence of Moa is the representation of values
by binary tables in such a way that nested sets are
flattened, thus enabling nested loops to be imple-
mented by single, unnested, loops. That is what we
are going to explain in this section — without too
much formality.

10 Notation. Let oid be the type of so-called
object identities; we let i , j vary over oid . Let val

denote the type of basic, unstructured, values. We
assume that oid , int , and bool are subsets of val .

11 BAT. A bat (binary association table) is a
relation, often a function, from oid to val :

bat = oid ↔ val (= P(oid × val) )

Our visualisation of a typical value of type bat is:

i0 v0
...

...
in−1 vn−1

We will frequently encounter a bat whose domain is
a single oid, and whose range is a set of oid’s:

i i0
...

...
i in−1

Of course, in a practical implementation such a
bat may be more efficiently stored as the tuple
(i , {i0, . . . , in−1}): oid × Soid . For the sake of el-
egance in our formula’s we refrain from doing that.

12 Flattening. The representation of a ‘nested
collection’ of type SS · · ·S(int × bool), say, will be
something of type bat×(bat×· · ·×(bat×(bat×bat))),
in such a way that the part ‘(bat×bat)’ contains all
tuples of all innermost sets. Thus the nesting of
several S’s is flattened. The flattening is done to
improve the efficiency of a manipulation with all in-
nermost components from SS · · ·S(int×bool) simul-
taneously. Moreover, each set on each level is also
present in such a way that a simultaneous manip-
ulation with all components of fixed, intermediate,
level can be done quite efficiently too.

13 The algorithm. We explain the representa-
tion (called ‘the bat representation’) by sketching
the construction of the representation for values of
type SS · · ·S(int × bool) × S · · ·S int by a series of
steps, proceeding inside-out. Values of structured
types are represented with their own handle, an oid,
which is a kind of indirection. For simplicity in the
pictures, we choose to represent values of basic types
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without a handle. Representing basic values with
an indirection, too, gives presumably nicer formu-
las but some pictures below would become too large
to fit on a line.

Step 0. The bat representation of a basic value
x : int is the value itself:

x

So, values of type int are represented by values of
type int . Similarly for boolean values.

Step 1. The bat representation with handle i of a
tuple (x , y): int×bool consists of two bats, associat-
ing i to the representations of x and y , respectively:

(
i x

,
i y

)

So, values of type int × bool are represented by val-
ues of type bat × bat .

Step 2. Consider the set {(x0, y0), . . . , (xn−1, yn−1)}
of type S(int × bool). Take the bat representations
of the individual elements of the set, say with han-
dles i0, . . . , in−1:

(
i0 x0

,
i0 y0

)

...
(

in−1 xn−1

,
in−1 yn−1

)

Then the bat representation with handle i of the
set as a whole is obtained by adding a new bat in
front (associating i to the handles of the individual
elements) and uniting the left components, and also
the right components, of the bats of the individual
elements:

(
i i0
...

...
i in−1

, (
i0 x0
...

...
in−1 xn−1

,
i0 y0
...

...
in−1 yn−1

))

So, values of type S(int × bool) are represented by
values of type bat × (bat × bat).

Step 3. Consider a set of type SS(int×bool), with
the set of the previous step as one of its elements.
Then the bat representation with handle j is, again,
obtained by adding a new bat (associating j to the
handles of the individual elements), and, per com-
ponent in the representation, uniting the bats of all
elements:

(
j

...
... i ′

j i
... i ′′

j
...

, (
...

...

i i0
...

...
i in−1

...
...

, (
...

...

i0 x0
...

...
in−1 xn−1

...
...

,
...

...

i0 y0
...

...
in−1 yn−1

...
...

)))

Note that, if the component set is empty (n = 0),
handle i disappears from the second bat, but it
stays present in the first one! So, values of type
SS(int × bool) are represented by values of type
bat × bat × (bat × bat).

Step 4. It may be clear by now how to proceed:
each S in the value type gives a (bat×) in the repre-
sentation type. Thus values of type Sm (int × bool)
are represented by values of type (bat×)m (bat ×
bat).

Step 5. Finally consider a tuple structure at the
outermost level: Sm (int × bool) × Sn int . The bat
representation of the tuple with handle k consists of
a tuple of bats (associating k to the handles of the
left and right argument, respectively), each compo-
nent being accompanied by the representation of the
respective argument. The picture below is for the
case that m = n = 2:

( (
k j

, (
j

...
... i

j
...

, (
...

...

i i3

...
...

, (
...

...

i3 x3

...
...

,
...

...

i3 y3

...
...

)))),
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(
k j ′

, (
j ′

...
i ′

j ′
...

, (
...

...

i ′ x ′7

...
...

))) )

Thus values of Sm (int × bool) × Sn int are repre-
sented by values of type (bat×)(bat×)m (bat×bat) ×
(bat×)(bat×)n (). The right component might be a
bit unexpected; it is caused by the fact that values
of basic type, like x ′7, are represented by themselves
and not with an indirection, like (x3, y3) having han-
dle i3. Type () is the so-called unit type, sometimes
called void ; it holds true that bat × () equals or is
isomorphic to just bat .

14 Labelling. In the previous type
(bat×)(bat×)m (bat×bat) × (bat×)(bat×)n (), some
factors (bat×) originate from structure S whereas
others originate from ×. In order to know how to in-
terpret each factor (bat×), we should have labelled
various constituents in the representation. Taking
the structure names themselves as label, and writ-
ing them as a prefix superscript, the representation
of the value discussed in Step 5 above then reads
as in Figure 1. Alternatively, it suffices to label the
entire value only, with the full type from which it
originates.

15 Formalisation. The sketch above is clear
enough to know, for each particular case, what the
bat representation of a value will be if its type is
built from basic types, ×, and S alone. A precise
and elegant (one-line!) formulation of the represen-
tation algorithm is needed when properties of the
representation have to be proven formally. Since
the latter is not our intention here, we omit the for-
mal representation algorithm.

D Generalisation—exploiting
categorical notions

16 Research issues. Now our categorical no-
tion of structure comes into play. Suppose we have

a value whose type is built from arbitrary struc-
tures F rather than the fixed × and S; how does its
representation look like? Does S play a particular
role, or can it be treated as any other structure?
What about structures F for which the user has a
particular representation structure F ′ in mind? Can
a structure F have two representations F ′ and F ′′?
What about disjoint union + (and arbitrary binary
structures) instead of the particular binary struc-
ture ×? Should the unary structure II be treated
the same way as the binary structure ×, or can we
do better (and, if so, in what sense)? What func-
tions can be computed efficiently on a bat represen-
tation? How can we characterise those functions?
What can we say about the improved efficiency (on
a suitable level of abstraction)?

For really general answers category theory might
provide helpful concepts. By way of experiment, to
show how categorical notions might help (at least,
they did inspire me!), we provide initial answers to
most of these questions, thereby presenting some
ideas that are currently (July 2000) new to the Moa
community.

17 On the notion of collection. I claim that
arbitrary structures can be treated in the spirit of
“the collection structure” S. I will demonstrate
this by re-doing the example of the previous sec-
tion, but now with II instead of × at the outermost
level. Recall the bat representation of two values of
type Sm (int×bool) in type (bat×)m(bat×bat) with
m = 2 as given in Figure 2. Recall that the repre-
sentation of the tuple of such values was obtained
by a tuple of new bats (associating the new handle
to j and j ′, respectively), each component being ac-
companied by the representation of the respective
argument.

Now we propose (or rather, we define) the rep-
resentation with handle k to be a new pair (again
associating the new handle k to j and j ′, as be-
fore), as a whole accompanied by the component-
wise union of the representations of the argument
values (which makes sense since they are of the same
type — thanks to the use of II instead of ×): see Fig-
ure 3. Thus values of type IISm (int×bool) are repre-
sented in (IIbat×)(bat×)m (bat×bat) rather than in
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×((
k j

, S(
j

...
... i

j
...

, S(
...

...

i i3

...
...

, ×(
...

...

i3 x3

...
...

,
...

...

i3 y3

...
...

)))), (
k j ′

, S(
j ′

...
i ′

j ′
...

, S(
...

...

i ′ x ′7

...
...

))))

Figure 1: The labelled value representation in Step 5.

S(
j

...
... i

j
...

, S(
...

...

i i3

...
...

,×(
...

...

i3 x3

...
...

,
...

...

i3 y3

...
...

))), S(
j ′

...
i ′

j ′
...

, S(
...

...

i ′ i ′7

...
...

,×(
...

...

i ′7 x ′7

...
...

,
...

...

i ′7 y ′7

...
...

)))

Figure 2: The representation of two equally typed values.

II((
k j

,
k j ′

), S(
j

...
... i

j
...

j ′
...
i ′

j ′
...

, S(
...

...

i i3

...
...

...
...

i ′ i ′7

...
...

,×(
...

...

i3 x3

...
...

...
...

i ′7 x ′7

...
...

,
...

...

i3 y3

...
...

...
...

i ′7 y ′7

...
...

))))

Figure 3: The representation of the pair of values from Figure 2.

II(bat×)(bat×)m (bat×bat). The advantage over the
latter representation is that a manipulation with all
innermost components simultaneously can be done
in one go!

It appears that this trick can be done
with arbitrary unary structure F . In other
words, values of type F Sm . . . will be rep-
resented in (Fbat×)(bat×)m . . . rather than in
F (bat×)(bat×)m . . ., thereby facilitating simultane-
ous manipulations of all innermost components in
one go. So, there is no need for a notion of “col-
lection”; the crux is that for a representation of a
value of an n-ary structure F (a0, . . . , an−1) all bats

of the a0-components are united, and similarly for
a1 through an−1.

Generalising a bit further, we have that each el-
ementary F in a (regular?!) structure gives rise to
(F ′bat×) in the representation. The representation
structure F ′ may be taken equal to F (as we did
for II), but the user of the system may also define
his own way of representing F -structured values (as
we will do for T, below in §19). For the set struc-
ture S, the representation structure S′ equals I: sets
are flattened by default.
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18 Dualisation. Roughly said, dualisation is
the systematic interchange of the source and tar-
get compoment in each type, and of the left and
right operand in each composition. Dualisation of a
categorically defined concept gives another categor-
ically defined concept, and dualisation preserves the
validity of categorically provable statements. With-
out further elaboration of the principle, we only con-
sider one example here: Cartesian product and dis-
joint union are dual to each other. Without giving
any argument, the fact that they are dual to each
other might be clear from the following declarations:

datatype a × b with M has destructors:

exl : a × b → a
exr : a × b → b

datatype a + b with O has constructors:

inl : a → a + b
inr : b → a + b

These declarations, under the interpretation of
types-as-sets, amount to the following definitions.
For Cartesian product:

a × b = {x : a, y : b | (x , y)}
f × g = λ(x , y) • (f x , g y)
f M g = λ x • (f x , g x )
exl = λ(x , y) • x
exr = λ(x , y) • y

Functions exl and exr are the extractions of the left
and right component. For disjoint union:

a + b = {x : a • (0, x )} ∪ {y : b • (1, y)}
f + g = (λ(0, x ) • (0, f x )) ∪ (λ(1, y) • (1, g y))
f O g = (λ(0, x ) • f x ) ∪ (λ(1, y) • g y)
inl = λ x • (0, x )
inr = λ y • (1, y)

Functions inl and inr are the injections into the left
and right summand of the union. Function f O g
is a case distinction with branches f and g . How-
ever, it is only by considering the proper categor-
ically expressed definitions of these concepts that
the duality may become really clear; we omit that
for brevity. We have already defined IIx = x × x

(for both types x and functions x ). Similarly, we
define structure 2 by 2x = x + x (for both types
and functions x ).

We now show informally how the principle of
dualisation suggests a representation for 2. To
this end, first observe that x = (3, 7): II int is rep-
resented by two bats x ′, x ′′ in such a way that
{x} = ran(x ′ M x ′′):

i 3 i 7
{x} = ran(x ′ M x ′′)

Dualising the latter right-hand side gives {x} =
dom(x ′ O x ′′). This suggests that the representa-
tion with handle i of x = inl 3: 2int consists of the
following two bats x ′ and x ′′:

3 i
{x} = dom(x ′ O x ′′)

Maybe more convincing is the representation of a
set, say x = {inl 3, inr 5, inl7}: S2int by the follow-
ing two bats x ′ and x ′′:

3 i
7 i

5 i
x = dom(x ′ O x ′′)

Indeed, as expected, x = dom(x ′ O x ′′). Note also
that a manipulation with all elements in the left
summand of x (here: inl3 and inl7) simultaneously,
can be done in one go, and similarly for those in the
right summand (here: only inr5).

It seems that with this representation, struc-
ture 2 can be dealt with in the general setting of
bat representations.

19 Binary trees. (This paragraph is hardly in-
spired by or dependent on category theory.) Con-
sider the following value of type T, the type of bi-
nary trees having values only at the tips; the paren-
thesized subscripts define the handles of the join
and tip nodes that we use later:

join(i0)


join(i1)

{
tip(ia ) a
tip(ib) b

join(i2)

 join(i3)

{
tip(ic) c
tip(id ) d

tip(ie) e
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On intuitive grounds, we propose the following bat
representation with handle i for that tree:

nodes
i i0
i i1
i i2
i i3
i ia
i ib
i ic
i id
i ie

depth
i0 0
i1 1
i2 1
i3 2
ia 2
ib 2
ic 3
id 3
ie 2

parent
i1 i0
i2 i0
i3 i2
ia i1
ib i1
ic i3
id i3
ie i2

tips
i ia
i ib
i ic
i id
i ie

value
ia a
ib b
ic c
id d
ie e

index
ia 1
ib 2
ic 3
id 4
ie 5

The conventional manipulations with trees can now
be done efficiently (or without losing too much effi-
ciency) with the Monet engine.

Taking VI to be the 6-fold Cartesian product, so
that VIx = x × x × x × x × x × x , we have that
each T in a value type gives rise to (VIbat×) in
the representation type. This is an efficient user-
defined alternative to the default representation in
which a T in a value type gives rise to (Tbat×) in
the representation type.

20 Efficiently computable functions. Apart
from representing values by bats, it is also Moa’s
task to implement value manipulations in terms of
the bat representation. Two value manipulations
in particular can be implemented very efficiently:
flattening and nested loops. This is because by con-
struction the bat representation of a nested set con-
tains a flattened form of the set; see Step 2 and 3 of
§13 and see also §17. We will elaborate this remark
a little, starting with precise definitions of nesting
and flattening.

A nested loop is a function of the form SSf . The
straightforward implementation of such a nested
loop traverses a set of sets, applying f to each ele-
ment of each set of the set-of-sets. Flattening, de-
noted ∪/, is the operation that transforms a set of
sets to one big set, containing precisely all elements
of the constituent sets:

∪/ = λ {x0, . . . , xn1} • x0 ∪ . . . ∪ xn−1

Nested loops and flattening are related by the fol-
lowing law:

S f ◦ ∪/ = ∪/ ◦ SS f

Reading from right to left, the law says how to elim-
inate a nested loop. In the context of Monet, the ob-
tained efficiency improvement is that the overhead
for dealing with nesting has gone (some bookkeeping
costs but especially the costly retrieval of data that
is stored non-consecutively on disk). A single loop
‘Sf ’ can be executed very efficiently since Monet is
optimised for traversing bats. Note, moreover, that
the cost for flattening is null (since the bat repre-
sentation contains flattenings by construction).

The fact that flattening and nesting of loops
come for free, in the bat representation, facilitates
several more efficiency improvements, involving ag-
gregations, as we show now. The aggregation com-
binator / transforms a binary operation ⊕ to a
unary operation ⊕/ on sets, which ⊕-s all elements
together:

⊕/ = λ {x0, . . . , xn−1} • x0 ⊕ · · · ⊕ xn−1

Here it is required that operation ⊕ is of type
a × a → a for some type a (and that ⊕ is asso-
ciative, commutative and absorptive); the typing
is then ⊕/: Sa → a. A special case is flattening,
∪/: SSa → Sa. An important law for aggrega-
tion says that f can be shifted down through a ⊕-
aggregation (while changing it to a ⊗-aggregation)
provided that it can already be shifted through op-
eration⊕ itself down to the arguments (while chang-
ing the operation similarly to ⊗):

f ◦ ⊕/ = ⊗/ ◦ S f provided f ◦ (⊕) = (⊗) ◦ II f
and f (ν⊕) = ν⊗

Here, ν⊕ stand for the neutral element of opera-
tion ⊕. For example, we have 2k+···+m+n = 2k ×
· · · × 2m × 2n , since 2m+n = 2m × 2n and 21 = 0.
The law has the following special cases, the first one
of which we’ve already seen above:

S f ◦ ∪/ = ∪/ ◦ SS f
⊕/ ◦ ∪/ = ∪/ ◦ S(⊕/)
∪/ ◦ ∪/ = ∪/ ◦ S(∪/)
(p/) ◦ ∪/ = ∪/ ◦ S(p/)

9



In the latter line, p/ is the function that selects all
elements of a set that satisfy predicate p. When
read from right to left, these special cases show a
way to eliminate nested loops, nested aggregations,
nested flattening, and nested selection, thus improv-
ing the efficiency of the function’s implementation.
It is Moa’s task to apply these optimisations.

The definition of the aggregation combinator /
given above was specific for sets, but can be gen-
eralised for (almost) any datatype. For example,
consider the definition of the tree structure T by
means of the datatype declaration in §8. Here we
can also define an aggregation combinator /:

⊕/ = fold (id ,⊕)

Again it is required that ⊕: a × a → a for some
type a, and then we have ⊕/: Ta → a. Remember,
in this way we have already defined the aggregated
sum over binary trees, and the special case is now
join/: TTa → Ta, which flattens a tree of trees to
one big tree. This phenomenon is quite general; a
wide class of datatypes come equipped with an ag-
gregation combinator.

(The following claim is possibly wrong. . . )
Apart from the flattening that comes for free in the
bat representation, we also have that “mapping over
a structure” is very efficient because of the internals
of Monet’s engine. This is expressed in our theory
as follows. Consider an arbitrary (regular?) struc-
ture F = GH , possibly with G = F or G = I , and
an arbitrary function f : Ha → b. Then the “map-
ping” Gf : Fa → b (doing f on each Ga-constituent
of an Fa-value) can be computed efficiently on the
bat representation: the overhead for doing the G-
combinator is almost nought (in Monet).

21 Structural transformations. Let F and
G be arbitrary structures. A structural transfor-
mation t from F to G , denoted t : F .→ G (and
called natural transformation in category theory),
is a function from F a to G a, for all types a (hence
called ‘polymorphic’), that only reshapes its argu-
ment, independent of the particular values of the
argument’s constituents. To formalise this latter
property, recall that Ff and Gf simply apply f to
each constituent of their arguments. Therefore, the

property says that Ff before the transformation has
the same effect as Gf afterwards. So, the two defin-
ing properties for being a structural transformation
read:

t : F a → G a for all a
t ◦ Ff = Gf ◦ t for all f

I think that structural transformations will play
an important role in the formal proofs of correct-
ness claims about the representation. Indeed, if F
in the type of a value gives rise to (F ′bat×) in the
representation type, then we expect that this is only
correct if there is a structural transformation from F
to (F ′bat ×). Manipulations on values can thus be
translated to manipulations on the bat representa-
tions.

E Conclusion

Category theory provides several notions (and a lot
of knowledge about those notions) that seem to be
just the right ones for a Theory of Moa. Much work
need to be done to elaborate the ideas given so far.
And there a lot more aspects of Moa and the Moa-
Monet combination that deserve study.

22 Related work. A lot of work has already
been done on Moa and the Moa-Monet combina-
tion. However, some of this has not been published,
but is only documented in internal working docu-
ments. Foremost of all should be mentioned the
Moa system itself; designed by Annita Wilschut, it
runs with a graphical interface under Unix, with Jan
Flokstra as main implementor. Moa is described as
a layer on top of Monet by Boncz et al. [4]. Sev-
eral draft papers were under construction by Annita
Wilschut [18, 16, 17]. A description of a typing sys-
tem for Moa is under construction by Maurice van
Keulen [11].

The categorical approach to program construc-
tion originates from work by Bird and Meertens
since 1987, and later Backhouse and his team; the
approach is described in a semi-formal setting by
Meijer et al. [14], and more formally in a series of
PhD theses by Malcolm [12, 13], Fokkinga [7, 5, 6,
8], de Moor [15], Jeuring [10]. Recently Grust [9]
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has followed this approach for studying query op-
timisation, and a categorical theory for Moa will
have close connection with his work. The categor-
ical approach to programming has by now evolved
to generic programming [1].
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