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Abstract

Analytical query processing over complex objects often suffers from disappointing performance due
to excessive use of nested-loop (element at a time) evaluation. Storing the data in a flattened form
enables collection based processing (set at a time), gaining performance at the cost of having to
write more complicated queries. This report proposes Dodo, an approach to automatic translation
of queries from the complex objects domain into set-at-a-time operations against data stored in a
flattened form.



Chapter 1

Introduction

1 Goal. The basic question we try to answer in this report is: what is a natural way of
translating expressions from a language based on the typed λ-calculus into a language based on
binary relational algebras. The source language has a type system based on type formers such as
“line segment”, or “list of x”, which can be arbitrarily nested, whereas the latter is based purely
on binary relations between atomic types. The main purpose of the current report is to establish a
systematic mapping from queries over the complex data model to queries based on bulk operations
over binary relations. Optimization issues and notational conveniences are mostly postponed to
another report.

2 Document structure. In the current chapter we give an informal introduction to what we
try to achieve and how the Dodo approach works. We also summarize the differences with Moa,
a predecessor system. Chapter 2 is more formal. There we first describe the type system of the
high-level part of the language. Then we introduce several concepts from category theory in the
context of that type system. In particular we show how the notion of a catamorphism allows us to
unify the treatment of structured data types, aggregate functions and a convenient comprehension
notation. In the final section of chapter 2 we look at the complications the two-layered Dodo
system gives for the catamorphism-based approach. In chapter 3 we give the syntax of our initial
Dodo language and a detailed account of how expressions are translated from their initial, value-
at-a-time representation into hopefully more efficient set-at-a-time counterparts. This chapter is
rather general. Chapter 4 pins down a couple of basic data structures and operations and gives
the specific rewrite rules using which these can be translated into the language of binary relations
which is the target of the Dodo rewriter. Finally, chapter 5 collects a number of issues that were
skipped in earlier chapters or which constitute future work.

1.1 Motivation

3 Complex data models. Non-traditional application domains with need for complex data
models are not well served by traditional relational database management systems. Examples of
such application domains are geographical information systems and several kinds of multimedia
applications. These applications involve large, often huge amounts of data with a high degree
of nesting. Updates tend to be infrequent whereas the queries tend to be complex and usually
aggregate or transform attributes of large numbers of entities. Current relational databases are
typically optimized towards multitudes of simple queries that retrieve and update a small number
of entities each (Transaction Processing).

The data models used by these applications are far away from the data model provided by the
databases. Moreover, the monolithic nature of these databases makes it hard to pick and choose
functionality: non-trivial extensions typically end up implementing their own storage management,
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access methods and other facilities that ought to be the responsibility of the DBMS. Not only do
these independent reinventions represent a lot of duplicate effort, they usually also lack data
independence: there is no decoupling of the applications algorithms from the storage layout and
the retrieval methods supported by it. Apart from the flexibility gained from using an intermediate
abstraction layer, there are also performance reasons: the implementation of the domain specific
algorithms tends to be very much tied to the implemented data access methods, which makes
them almost impossible for a query optimizer to get a grip on. In contrast, the relational model,
even its butchered implementation in existing SQL systems, both insulates the application from
low-level issues of storage management and provides the optimizer with a small set of well-defined
primitive operators for which many specialized implementations are known.

4 Nested loop processing. One particular pitfall in querying complex data structures is
to get stuck in nested loop processing, which means a quick alternation between retrieving an
object, doing a small amount of processing, retrieving a related object, etc. It is almost impossible
to achieve any reasonable performance this way, because one ends up bound by the latency of
the object retrieval phase. Especially on modern hardware, memory latency is extremely poor
relative to the speed of the CPU. It is essential to organize the data in such a way that operations
are performed on large numbers of items at the same time, preferably items that are stored
consecutively to guarantee predictable access patterns.

The cost of branch mispredictions and cache misses has become so large that the only way
to get modern hardware to approach its theoretical performance limits is by taking algorithms
with extremely simple and predictable inner loops and tuning them to the cache hierarchy [9].
The cache hierarchy consists of the L1 cache at the top, with an access latency of only a couple
of cycles, through other cache levels, main memory with a latency of hunderds to thousands of
cycles, to disk storage with a latency that is measured in milliseconds, i.e., millions of cycles. It
used to be sufficient to simply minimize the number of disk accesses, employing sometimes rather
complicated algorithms to do so, but nowadays one must really take into account the properties
of the L1 and L2 cache. This leads to simpler algorithms. In fact, in a surprisingly large number
of cases, a sequential scan over an array outperforms more sophisticated algorithms for the simple
reason that its memory access pattern is so predictable [4]. As Terje Mathisen of comp.arch fame
puts it in his signature,

Almost all programming can be viewed as an exercise in caching.

5 Data decomposition. With analytical processing in particular it is important to avoid
nested loop processing. As indicated above, this implies expressing the query using relatively
many bulk operations that each perform a simple action on a large number of items. The usual
way to do this is to bring the data in 3NF or other relational normal form. One can take this a
step further and split every so obtained n-ary relation R into n − 1 binary relations between the
primary key of R and one of its attributes. This is called “vertical decomposition.” It is often
possible to arrange for the key attributes to be a range of consecutive integers. In that case, only
the value attributes need to be stored, possibly in an array-like structure with the keys as array
indices. Clustering by attribute rather than by entity allows operations that access only one or
two attributes of many entities to avoid wasting cache space and memory bandwidth on attributes
they are not going to use. This kind of query is very common in analytical query processing.

6 Semantic gap. On the one hand, applications require complex data models with complex
operations on this data; on the other hand, in order to get performance the data needs to be
carefully decomposed and accessed using simple bulk operations. The idea behind Moa and now
Dodo is to support rich data models with nested data structures on top of a decomposed storage
abstraction, automatically translating queries from the nested domain to the flattened domain as
needed. The automatic translation insulates the user from the details of the decomposition and
the size and complexity of the queries, thus providing a degree of data independence. Another
benefit of this approach is that new data structures are no longer byte sequences stored by, but
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otherwise opaque to the underlying DBMS. Instead, new data structures are defined in terms
of building blocks understood by the DBMS, in particular its optimizer. This can have massive
benefits for both extensibility and performance [ref dexapaper].

7 MonetDB. MonetDB [4, 1, 3, 2] is an extensible database kernel based on binary relations. In
MonetDB, binary relations are implemented as BATs, Binary Association Tables. For the reasons
outlined in paragraph 4, a BAT is a region of memory containing consecutive (value1, value2)-pairs
together with some metadata. In principle, BATs are operated upon in main memory, using cache-
aware algorithms whenever possible. If not enough memory is available, MonetDB uses virtual
memory. When available, MonetDB uses madvice to advice the virtual memory subsystem of its
intentions.

MonetDB can readily be extended with new elementary types, new BAT operations and new
search accelerator. A search accelerator is an auxiliary data structure that does not change the
semantics of a BAT, but may speed up certain operations on it. We call MonetDB an extensible
database kernel rather than a database management system because, even though it provides most
additional features, MonetDB is more intended as a toolbox than a complete system. For instance,
it does provide a lock manager but it can easily do without. The focus on vertically decomposed
storage, combined with its general toolbox approach make MonetDB particularly well-suited for
the approach outlined in this work.

8 Moa and Dodo. BATs are suitable as building blocks for larger data structures such as
relations as used by the SQL front-end and document trees in the XQuery frontend [7]. The
Moa system started as a general front-end to MonetDB in the MAGNUM GIS project [2, 12].
It allows the user (the extension writer, to be precise) to define new, nested data types together
with a way of mapping them to BAT storage. Operations on the nested structures are translated
to BAT operations. In later projects, Moa has been applied to multimedia retrieval [5, 10]. In
the SUMMER project [13] Moa has served as an intermediate language for querying (distributed)
SQL databases using a subset of XQuery.

Dodo can be regarded as a theoretical clean-up of Moa. It is an attempt to give Moa a
theoretical foundation using a categorical theory of data types similar to [8]. Such a foundation
is necessary for every attempt to reliably bridge the semantic gap referred to in paragraph 6. A
bridge between complex data model and decomposed storage needs to be sufficiently abstract to
provide data independence, it needs to be extensible at both the nested and the flattened level,
and it needs express the nested query using bulk operations in order to achieve performance. For
all these concerns, a clean mathematical foundation is a huge benefit.

1.2 Overview

This section gives a high level overview of the Dodo approach. We start with the way the nested
data structures are mapped to binary relations, then explain what happens when a query is
processed by Dodo.

9 Flattening data. The Dodo system evaluates queries over structured data which has
been decomposed into binary relations. A “binary relation” is set of pairs. Note, however, para-
graph 108. For historical reasons, we often use the word “column” for binary relations used in
Dodo.

How the “flattening” of data structures into columns is achieved is best understood by means
of an example. Consider the following bag of bags of strings

B = {|{|fido|}, {|spot, rex|}, {||}|}.

Start by giving every part of the expression a unique identifier.

B = {|{|fido1|}10, {|spot7, rex8|}20, {||}30|}100.
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There is one outer bag, three inner bags and three elements. We store their identifiers as three
binary identity relations d1, d2 and d3:

d1

100 100
d2

10 10
20 20
30 30

d3

1 1
7 7
8 8

By a binary identity relation we mean a binary relation consisting only of (x , x )-pairs. Reasons
for using exactly this representation for sets are discussed in paragraph 12. The relation between
outer bag and inner bags is given by r1; the relation between inner bags and elements is given
by r2; the relation between element identifiers and dog names is given by f as follows:

r1
100 10
100 20
100 30

r2
10 1
20 7
20 8

f
1 fido
7 spot
8 rex

Notice that 30, the identifier of the empty inner set, does occur in r1 but not in r2.

10 Frames. To express the way the columns model, in this case, a bag of bags of strings, the
columns are arranged in frames:

F = bag〈d1, r1, bag〈d2, r2, atom〈f 〉〉〉. (1.1)

A frame consists of a frame name, which identifies its type, together with zero or more columns
and subframes. The bag frame corresponds to the “bag of” type. The atom〈〉 frame corresponds
in this case to the “string” type. It needs a single column to store its mapping from keys to dog
names. It is very important to realise that a frame represents not one, but a collection of values,
each value identified by an identifier that is unique within the frame. In other words, a frame
represents a function from its domain to its corresponding type. Exactly how the value for a given
key k is constructed depends on the frame type. With atom〈f 〉, the key is simply looked up in
column f ; for bag〈d , r ,F 〉, first the relational image {k ′ | (k , k ′) ∈ r} is constructed, and then the
resulting elements keys are looked up in F . In paragraph 19, such a “lookup procedure” is called
the interpretation function of the frame.

11 Explicit domains. The careful reader may have noticed that d3 is not mentioned in
equation (1.1). It is important to understand why d3 does not occur there while d1 and d2 do.
A frame represents a function. A function has a domain. As explained in section 73 the rewrite
process needs a way of constructing the domain of a frame for each frame type. The domain of the
atom〈f 〉 frame (d3) can easily be obtained from f . However, the domain of bag〈d2, r2, atom〈f 〉〉
cannot be obtained from r2 and f alone: the empty bag with key 30 does not show in either r2
or f . That is why bags carry along their domain explicitly in the form of a column d .

12 Everything a binary relation. The choice to represent “index sets” such as d1, d2 and d3

as binary index relations rather than unary relations was made because it allows many operations
to be expressed using relational composition. The relational composition operator ∗ is defined by

r ∗ r ′ = {(x , z ) | (x , y) ∈ r ∧ (y, z ) ∈ r ′}.

If we additionally define twin(r) = {(x , x ) | (x , y) ∈ r} and rtwin(r) = {(y, y) | (x , y) ∈ r},
intersection, relational restriction and relational image can all be expressed using these three
operations. With d ′1 = {100}, d ′2 = {10, 20, 30} and d ′3 = {1, 7, 8} as the unary counterparts of d1,
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Application

DODO

Monet

user

Dodo query Dodo result

(point free)

Frame/column query Frame/column result

(binary) rel. alg. binary relations

1

2

3

4

Figure 1.1: Flow of information in the DODO system. Horizontal lines denote boundaries between
components. The Dodo query and result languages form the interface between Dodo and the
application. The target database, is addressed using its own query language and returns data
in the form of binary relations. The dashed line within the DODO component separates the
target-independent and the target-dependent parts of DODO.

d2 and d3, the following are equivalent:

“intersection” d ′1 ∩ d ′2 and d1 ∗ d2

“domain restriction” d ′1 / r and d1 ∗ r
“range restriction” r . d ′2 and r ∗ d2

“relational image” r [d ′1] and rtwin(d1 ∗ r)
“range” ran(r) and rtwin(r)
“domain” dom(r) and twin(r)

In section 3.2 we generalize the composition operator, allowing it to under some circumstances
take frames rather than columns as a right hand argument. Every frame type provides a rewrite
rule to implement this. For instance, the atom frame implements ∗ as

r ∗ atom〈f 〉 = atom〈r ∗ f 〉.

If we implemented the above operations directly rather than using column operations and ∗, new
frame types would need to define more rewrite rules.

13 Flow of processing. The general flow of information in Dodo is depicted in figure 1.1. In
the next several paragraphs we follow a query as it flows through the system.

Consider a system which stores information about dogs. The underlying database defines d1,
d2, d3, r1, r2 and f as in (1.1), and also g = {1 7→ 3, 7 7→ 1, 8 7→ 9}, a column of dog ages.
However, instead of 100, the key for the outermost bag in equation (1.1) is the special singleton
key †. The key † is the element of the unit type 1 = {†}. This type is used throughout Dodo to
emphasize that there is exactly one instance of a given entity. The revised columns can be found
in figure 1.2.

The cycle starts when an application poses a query to the Dodo system on behalve of the user.
The interface between Dodo and the application consists of the Dodo query language for posing
the query and the Dodo result language for retrieving the result. The degree to which any of these
are visible to the user depends on the application.
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d1

† †
d2

10 10
20 20
30 30

d3

1 1
7 7
8 8

r1
† 10
† 20
† 30

r2
10 1
20 7
20 8

f
1 fido
7 spot
8 rex

g
1 3
7 1
8 9

Figure 1.2: Example database. The unit key † identifies the database as a whole. The keys
10, 20 and 30 can be considered to identify owners, although the example does not depend on
this interpretation. The keys 1, 7 and 8 identify dogs. This database is redundant: d1 is a
synonym for idunit , see section 82. Likewise, d2 is an abbreviation for rtwin(r1). Alternatively,
r1 = sethead(d2, †).

Suppose the user asks the application for a bag containing a (name, age) pair for every dog in
the system. Given the data in figure 1.2, Dodo should return the bag

{|(fido, 3), (spot , 1), (rex , 9)|}. (1.2)

The result frame for this query re-uses keys for multiple parts of the expression, which are disam-
biguated by their syntactical position: one is the left hand of a bag member, one is the right hand
of a bag member, and one is the bag member itself:

{|(fido1, 31)1, (spot7, 17)7, (rex8, 98)8|}†. (1.3)

Note that the wording “a collection of values, each value identified by a key unique within the
frame” in paragraph 9 allows this re-use of keys. Assuming the existence of idunit := {† 7→ †}
and sethead(r , v) := {(v , y) | (x , y) ∈ r}, the following is the corresponding frame for bag (1.3):

bag〈idunit , sethead(d3, †), pair 〈atom〈f 〉, atom〈g〉〉〉. (1.4)

This frame forms a bag by taking d3, which represents the dog keys in the system, and turning it
into a relation sethead(d3, †) = {(†, 1), (†, 7), (†, 8)}. The dog keys are looked up in the pair frame,
which in turn looks them up in the two atom frames.

14 Schema. To pose a query in the Dodo language, we first need a schema that defines the
entities the query can refer to. A Dodo schema can be regarded as an “external view” on the
database. Many such schemas can co-exist at the same time, combining columns into frames in
different ways. We assume that the database administrator has provided the following schema:

nd = nesteddogs : Bag Bag Dog := (bag〈d1, r1, bag〈d2, r2, atom〈d3〉〉〉) †
=

{

† 7→ {|{|11|}10, {|77, 88|}20, {||}30|}†
}

;

dn = dogname : Dog → String := atom〈f 〉
= {1 7→ fido, 7 7→ spot, 8 7→ rex};

da = dogage : Dog → Int := atom〈g〉
= {1 7→ 3, 7 7→ 1, 8 7→ 9}.

(1.5)

Note that the atom〈〉 frame in the first definiton depends on the fact that d3 is a binary identity
relation. We assume that the schema also specifies that all known dogs do occur somewhere
in nesteddogs . This schema is intentionally clumsy in that it stores the dog identifiers in a bag of
bags, rather than just in a single bag. Later on we shall see how Dodo eliminates this nesting.

15 Example Query. In the Dodo query language, the simplest query to retrieve the
(name, age)-pairs from the given schema is

Q = Bag[(dn d , da d) | b ← nd , d ← b].

This query calls for the construction of a bag Q by iterating over the bags in nesteddogs (i.e., b ←
nd) and then over every dog d in those bags (d ← b). For every dog, a pair is constructed ((·, ·)).
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The left hand of the pair is the name of the dog, which we get by applying the function dogname
to the dog identifier (dn d). The right hand is constructed using dogage.

Translating Dodo query language expressions into the frame and column language corresponds
to the upper two downward arrows in the DODO block in figure 1.1. Before constructing frames,
Dodo first brings the expression in point-free form. Point-free form is explained in paragraph 16.
The point-free form of Q is

Q ′ = Bag(onl dn ◦ onr da ◦∆) ◦ unnestBag ◦ const nesteddogs

= Bag onl dn ◦ Bag onr da ◦ Bag ∆ ◦ unnestBag ◦ const nesteddogs .

These two variations are equivalent. The first thing to note here is that unlike Q , query Q ′ is of
function type, as signified by the occurrences of the functional composition symbol ◦. The reason
we need Q ′ to be a function is that frames are functions, and we want to translate our query into
a frame. Therefore, at some point Q needs to be turned into a function. The first step in our
rewrite process is to wrap Q into a lambda expression, yielding

λw • Q : {†} → Bag(S× Z).

This is the expression that is subsequently rewritten to point-free form.

16 Point-free form. Reading Q ′ from right to left, the constant function const nesteddogs
takes the initial † and produces a nested bag of dog identifiers: {|{|11|}10, {|77, 88|}20, {||}30|}†. Then
unnestBag removes one level of nesting, yielding {|11, 77, 88|}†. The Bag operator takes a function

and applies it to all elements in a bag. The “split” operator ∆ :=
(

λx • (x , x )
)

constructs identical
pairs, so Bag ∆ transforms {|11, 77, 88|}† into {|(11, 11)1, (77, 77)7, (88, 88)8|}†. The operators onl and
onr apply an operator to the left- and right hand side of a pair respectively, giving the end result

{|(fido, 31)1, (spot, 17)7, (rex, 98)8|}†.

Informally, an expression is in point-free form when it is expressed completely as a composi-
tion of functions, without any reference to individual elements at all. However, as demonstrated
by const nesteddogs in Q ′, individual elements come back in through the back door in the form of
constant functions. For every value, a constant function can be defined that always returns that
particular value.

Function applications to individual elements such as dn d in Q have in Q ′ been replaced by
bulk function applications such as Bag onl dn, hopefully eliminating some nested loop processing
from the eventual query plan. However, the bulk operations still operate on potentially complex
collection types. In the example we only used bags, but any other data structure for which a
frame has been defined can be used. The next task in our translation process is to break down
these complex bulk operations and replace them by “simple” ones, that is, operations that work
on columns (MonetDB BATs).

17 To columns and frames. The key to understanding the translation from point-free form
to the column and frame language is the fact that frames represent functions. Therefore, they can
be substituted for functions. The translation proceeds by repeatedly taking the composition (f ◦F )
of a function f with a frame F and replacing it by a new frame F ′ that incorporates the action
of f into F . As a simple example, consider the pair formation function ∆. For this function, Dodo
has the following rewrite rule:

∆ ◦ F = pair 〈F ,F 〉.

Similarly, the onl operator, defined as onl f (x , y) = (f x , y), has the rule

onl f ◦ pair 〈F ,G〉 = pair 〈f ◦ F ,G〉.

In this way, every function defined in a Dodo schema comes with one or more rewrite rules which
prescribe how to compose that function with a frame of suitable type. Often, the rewrite rules
need column operators. For instance, the unnestBag function is rewritten like this:

unnestBag ◦ bag〈d1, r1, bag〈d2, r2,F 〉〉 = bag〈d1, r1 ∗ r2,F 〉
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where ∗ is the relational composition (semijoin) operator.
To bootstrap the translation, a composition with atom〈idunit〉 is appended to the query. Using

rewrite rules similar to the above, the query

Q ′ ◦ atom〈idunit〉

is eventually rewritten to

bag〈d1, r1 ∗ r2, pair 〈atom〈d3 ∗ f 〉, atom〈d3 ∗ g〉〉〉.

The above frame is more complicated than the hand-crafted frame (1.4). If, however, metadata
is attached to the columns, for instance a hint declaring that d3 comprises the full space of dog
keys, i.e., that every dog key in the system occurs exactly once in relation d3, it is not hard for
the system to simplify d3 ∗ f into f . Similarly, if r1 is an alias for sethead(d2, †), and d2 is known
to comprise the space of owner keys, r1 ∗ r2 can be simplified to

sethead(d2, †) ∗ r2 = sethead(d2 ∗ r2, †) = sethead(r2, †).

That Dodo finds sethead(r2, †) here rather than sethead(d3, †) is caused by the clumsiness of the
example schema, which does not mention d3 at all.

This concludes our informal description of the arrows from “Dodo query” to “column and
frame query” in figure 1.1. A more detailed description is given in chapters 3 and 3.3.

18 Execution. After the query has been translated into the frame/column language, the
column expressions are extracted from the frames, translated into the target language and exe-
cuted by the target platform. The results are then put back into the frame structure. Currently,
the target is MonetDB with its query language MIL. In diagram 1.1, these steps are indicated
by the curved four-arrow rectangle in the lower part of the diagram. Arrow 1 is the translation
from column expressions into MIL. Arrow 2 shows that the frame skeleton surrounding the col-
umn expressions is passed into the answer unmodified. Arrow 3 signifies execution by MonetDB,
and arrow 4 represents the trivial transition from BATs (MonetDB domain) to columns (DODO
domain).

In our example, the query

Q ′′ = bag〈d1, r1 ∗ r2, pair 〈atom〈d3 ∗ f 〉, atom〈d3 ∗ g〉〉〉

is split into

Q ′′ = bag〈m1,m2, pair 〈atom〈m3〉, atom〈m4〉〉〉,

m1 = generate mil(d1) = d1

m2 = generate mil(r1 ∗ r2) = r1.join(r2)

m3 = generate mil(d3 ∗ f ) = d3.join(f)

m4 = generate mil(d3 ∗ g) = d3.join(g)

After execution, this becomes

Q ′′ = bag〈m1,m2, pair 〈atom〈m3〉, atom〈m4〉〉〉

with

m1

† †
m2

† 1
† 7
† 8

m3

1 fido
7 spot
8 rex

m4

1 3
7 1
8 9

(1.6)

This is our result set, but still in in flattened form. The final step is to turn this flattened form
back into a nested form for delivery to the user.
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19 Dodo Result language. We have followed the example query from the application through
Dodo and MonetDB until the point where a frame is constructed which represents the result value.
The final step is to bring this flattened representation of the result in a more intuitive form:

{|(fido1, 31)1, (spot7, 17)7, (rex9, 98)8|}†

rather than

bag〈 m1

† †
, m2

† 1
† 7
† 8

, pair 〈atom〈 m3

1 fido
7 spot
8 rex

〉, atom〈 m4

1 3
7 1
8 9

〉〉〉.

For every frame type there is an “interpretation function.” Informally, this is a function of
type Frame → Key → X taking a frame and a key for which to retrieve the corresponding
value. The return type is given here as X and the question is: what is X ?

The simplest solution is to let X be the type of strings. For a bag〈〉 frame, the interpretation
function can build a string representation by interspersing the string representations of its elements
with commas and enclosing the result in suitable brackets. This approach has the advantage that
it is easy to understand and implement. However, string representations like this tend to be more
suitable for human consumption than for further processing by machines.

In the Moa system, X takes the form of a series of method invocations on a “driver object.”
Basically, such an object defines open(t), close(t) and atom(x) methods. In the bag〈〉 example
above, open corresponds to the opening bracket, close to the closing bracket and atom to the
individual strings and numbers. Applying the interpretation functions corresponds to the second
last arrow of diagram 1.1, the driver object corresponds to the final arrow back to the user. The
interesting feature of using a driver object is that it allows the output to be displayed and processed
in various ways. For instance, one can have a driver function which generates human-readable
string representations and another one which generates XML.

From a theoretical point of view, the exact form of the “Dodo Result Language” X is mostly an
engineering issue. Results have to be handed to the requesting application in a way that is suitable
for the application in question. What matters however, is that whatever result language has been
chosen, it has been specified with sufficient precision for defining unambiguous interpretation
functions. As mentioned before, the interpretation function defines the semantics of a frame.
Extending Dodo with new frame types means defining interpretation functions for them, and
several other operations. The rewrite system depends on these operations to obey certain laws.
If the result language and interpretation functions are not defined precisely enough, it becomes
impossible to prove that the laws are satisfied, and chaos ensues.

20 Roles. It is often useful to distinguish between different kinds of roles a person can play
from the point of view of Dodo.

An extension writer is someone with a more or less intimate knowledge of the inner working of
the Dodo system. At the nested-structure layer, an extension can introduce new types by declaring
a new frame type and giving an interpretation function for the new frame. New operators are
added by declaring a name and a type for the new function, and giving rewrite rules that express
them in terms of frames and columns. At the column level, an extension can declare new column
operators by giving their name, type and a translation into the language of the underlying database
system, for instance MIL or SQL.

A schema writer knows about the data in a specific database and is aware of the frame types
and interpretation functions defined by various extensions. It is the task of the schema writer to
map the data in the underlying system to columns and to organize the columns in frames, allowing
users to pose queries over it in terms of complex data structures. In paragraph 14 we called the
schema writer a database administrator. Schemas extend Dodo with data definitions just like
extensions extend Dodo with operations. The distinction is mostly a convention, the underlying
mechanisms are exactly the same.

A user primarily accesses the data in the database using the nested data structures defined by
the schema writer and the operations defined by the extension writer.
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21 Summary. In this section we have seen how nested data can be stored in a flattened way,
and how queries expressed in terms of the nested representation can be transformed into queries
over the flattened representation.

In the flattened representation, the data is organized in frames, which each represent a collec-
tion of values of a given type, identified by a locally unique key. Frames are constructed out of other
frames and binary relations between atomic values. The nested form of a value is reconstructed
using an “interpretation function” that takes a frame and a key and returns the corresponding
value in the Dodo Result Language, the details of which do not influence the rest of the system
very much.

The transformation of queries is done in two steps. First the query is turned into a composition
of functions. A query consists of two things: references to data in the database and operations
performed on this data. The operations are already in functional form, the data is represented
as a constant function. A Dodo schema defines frames for these constant functions and frame
transformations for operations. By applying these, we arrive at a frame representation of the
(constant function of) the result value of the query.

Computations on complex data types have been replaced by operations on binary relations
within the result frame. The second step is taking these “column expressions” out of the frames
and executing them on the target database. To do so, the column expressions are first translated
to the target database language, in our case MIL, the language of MonetDB. Semantically, the
column algebra and MIL are very similar, so the translation is rather straight-forward. After
execution, the results are put back in the frame and interpretation functions are used to construct
a nested return value.

1.3 Differences with Moa

22 Same principle. Moa and Dodo are based on the same principle. Data structures are
stored in a flattened form. The flattening roughly follows the nested structure of the data type:
a bag of bags of strings is stored using two bag〈〉 frames and one atom〈〉 frame. Basically, for
every type former a frame. The frame for a type former expresses the contribution of the type
former to the structure of data in terms of columns (binary relations), delegating the structure of
its argument types to their respective frames. There is a difference in naming: in this report we
speak about frames where the Moa literature would talk about structures. This change was made
to free the word “structure” for use in a more general way.

23 Value and IVS. Moa distinguishes between two kinds of structures: Value structures
and IVS structures. A value structure represents a single value, an IVS structure represents a
collection of values identified by keys. The acronym IVS stands for “indexed value set.” In Dodo,
IVS structures correspond to frames, whereas value structures correspond to the special case of a
frame with domain {†}. Moa distinguishes these two forms because an IVS is a partial function
whereas a query asks for a single (but structured) result value, i.e., “the set of dogs that. . . ” or “a
list of names of. . . ”. As a consequence, value structures usually occur only at the outermost level
of the query. They also occur in modifiers, which can be regarded as the bodies of lambda terms
with a variable implicitly named THIS . A typical use of modifiers is turning a set S = Set〈d , r ,F 〉
into a set of pairs:

map[Tuple〈THIS ,THIS 〉](S ) = Set〈d , r ,Tuple〈F ,F 〉〉. (∗)

We see here that the Moa map has two kinds of arguments: actual arguments between parentheses,
and modifiers between square brackets. The arguments between the parentheses are structures,
or things that are eventually rewritten to structures. The modifiers are functions, in this case the
pair-forming function

(

λTHIS • (THIS ,THIS )
)

.
There are two disadvantages to the value/IVS distinction. One is simple: every operation

in Moa is implemented twice. It is implemented once for value arguments and once for IVS
arguments. The other disadvantage is more subtle and more fundamental. Looking closely at the
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two occurences of Tuple in equation (∗), it turns out that the one on the left is a Tuple value,
where the one on the right is an Tuple IVS. The one on the left is a value structure because
THIS refers to a single element of S . Therefore, the resulting tuple is also a single value. The
Tuple on the right is part of a Set structure, and therefore an IVS. This phenomenon requires
the implementation of map to be able to somehow convert value structures into IVS structures.
For Tuple, this is easy, because Tuple values and IVSes have exactly the same structure. But
for Set structures, which have a different structure in the value and IVS cases, it is a very hard
problem. Moa deals with this simply by requiring value structures occuring in modifiers to be
trivially translatable to IVS. Note however, that it is still possible to put Set -valued expressions
in the modifier, only the actual Set〈〉-structures are forbidden.

It is interesting to take a closer look at the difference between Set value and Set IVS in Moa.
In the value case Set〈e,F 〉, it has two components. The first component contains identifiers of
the elements of the set, and the second is an IVS in which these identifiers can be looked up.
In the IVS case Set〈d , r ,F 〉q, there are three components: a domain d , a relation r between set
identifiers and element identifiers, and an IVS to look up the element keys.

24 Unifying value and IVS. Dodo unifies value and IVS structures into a single frame con-
cept, with the value structure recognizable through the type system. Value structures correspond
to frames with domain type {†} = 1. Due to the categorical influence on its design, almost ev-
erything in Dodo is a function. The query result problem is solved by allowing the user to enter
a query Q of type X , but explicitly wrapping it in a lambda-term λz • Q : 1 → X if X is not a
function type. Operators with modifiers in Moa are in Dodo replaced by higher-order functions
which take lambda terms as arguments. The class of lambda terms allowed corresponds precisely
to the modifier they replace: first-order lambda terms, i.e., functions of type A → B with A
and B non-function types. The advantage of lambda terms is that names other than THIS can
be used, and that they are a convenient and well-known tool both in query formulation and in
query processing. They also make it easier to implement things like the comprehension syntax in
paragraph 48.

25 Labels. There is one particular aspect of the Moa language for which there is no true
equivalent in Dodo. In Moa, to every subexpression a label can be attached, which is usually
preserved by rewrite rules. These labels have many uses. Their original purpose was to make
records out of tuples by labelling the components. Later, in XML-related applications, they have
been used to indicate the xml-tag that should be wrapped around the data produced by particular
subexpressions.

Convenient as they are, these labels are hard to fit into the more rigid type system used by
Dodo. The closest equivalent would be a family of label foo functors that basically include label-
information in the type, lifting a type A to a type “A labeled foo.” This is sufficient for XML-tags,
but somewhat inconvenient for records, because when one needs to access one of the components
of a record, one either needs to lift the accessing function to the label, or explicitly “unlabel” the
value first. Time will tell whether all uses of labels can be expressed by existing Dodo mechanisms
or that Dodo will have to be extended in one or more ways.
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Chapter 2

Data Types

Before we describe the Dodo Query language and frame/column language in detail, we describe
the data types it works on. In the Dodo layer (see figure 1.1) two type systems are used. One
based on binary relations between atomic types and one based on complex data structures with
nesting. The details of the relation-based type system are not very well-flushed out, more about
this in section 3.1.

The type system for nested data developed in this chapter is based on a categorical notion of
data types, similar to [8] and [6]. The main ideas borrowed from category theory are: data types are
formed by applying type formers to other types; those type formers (functors) simultaneously map
functions over argument types to functions over the new type; in general, the emphasis is more
on the structure of functions between data types than the data types themselves, with special
attention to functions that can be defined by induction to the construction of their arguments
(catamorphisms); the monad concept gives a nice mathematical foundation for comprehension
syntax, e.g., {x ∈ R | x 2 < 2}.

In the first part of this chapter, the categorical theory of data types is described. When
possible, categorical concepts are introduced under the guise of their Set-theoretic specialisations.
For instance, we speak of functions rather than arrows and of data types rather than nodes or
objects. Skipping as much as possible, we try to get to the notion of catamorphisms and introduce
the monad concept. Then in section 2.3 we step back and discuss how all this applies to Dodo.

26 Notation. In this document, we write the application of a function f to a value e as f e
rather than f (e). Lambda terms are written with a •, that is, λx • x . Constant functions λx • c
are abbreviated to c.

2.1 Type Formers

Every Dodo value has a type. The type is constructed out of the following elements:

27 Unit type. The unit type 1 contains precisely one value, †. This data type has the
interesting property that it requires zero bytes of storage.

28 Primitive types. Primitive types are defined by the underlying system. In this report we
assume Int , Str and Bool , sometimes written Z, S and B. The if then else construct requires the
boolean type.

29 Function types. Function types A→ B denote maps from one type to another. A function
of type A → B assigns to every element of A an element of B . To ensure efficient evaluation on
database back-ends there are limits on the complexity of function types that may actually occur
in queries, see section 3.3 for details.
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Figure 2.1: A summary of functions related to sum- and product types. This is a commutative
diagram. That means that it is a graph with types as nodes and maps as edges. A path through
the graph is a concatenation of edges and corresponds to a composition of maps. The existence
of multiple paths between a given pair of nodes implies equality of the maps corresponding to
those paths. For instance, among the equalities implied this way by the above diagrams are
exl ◦ (k M `) = k and exl ◦ (f × g) = f ◦ exl .

30 Product types. An element of a product type A × B is a pair (a, b) with a ∈ A and
b ∈ B . The functions exl : A × B → A and exr : A × B → B are used to retrieve the left- and
righthand parts. For every k : E → A and ` : E → B we define k M ` : E → A× B by

(k M `) e = (k e, ` e)

and for f : A→ C and g : B → D we define f × g : A× B → C ×D by

(f × g) (a, b) = (f a, g b).

The relationship between these functions is summarized in the left part of figure 2.1. The formula
k M ` is generally pronounced “k split `”.

31 Sum types. An element of a sum type A + B is either a left-handed or a right-handed
value. Left-handed values are drawn from type A, right-handed are drawn from type B . Left- and
right-handed values are created using inl : A→ A + B and inr : B → A + B , respectively. Given
f : A→ C and g : B → D , the function f + g : A + B → C + D applies f if it encounters a left-
handed argument and g if encounters a right-handed argument. For h : C → F and j : D → F ,
the function h O j : C + D → F applies h or j as appropriate, but returns the resulting F value
without a left- or right-handed orientation. Again see figure 2.1 for a pictorial presentation of the
relationship between these functions. The formula h O j is generally pronounced “h junc j .”

32 Functors. Types can be lifted to other types using functors. For example, the List functor
transforms a type A into the type ListA of lists over that type. At the same time, List transforms
any function f : A→ B into a new function Listf : ListA→ ListB that applies f to every item in
the list:

List f [1, 2, 3] = [f 1, f 2, f 3].

A functor has two defining characteristics: it lifts the identity function of a type to the identity
function of the new type

List id [1, 2, 3] = [id 1, id 2, id 3] = [1, 2, 3] (2.1)

and it distributes over composition

(List f ◦ List g) [1, 2, 3] = List f (List g [1, 2, 3]) = List f [g 1, g 2, g 3]
= [(f ◦ g) 1, (f ◦ g) 2, (f ◦ g) 3]
= List (f ◦ g) [1, 2, 3].

(2.2)

Defining new functors is a common way of extending Dodo. In the case of container types like F =
List, the function F f is defined as applying f to the items of the list.
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33 Bifunctors. It is possible to have functors that take more than one type as an argument.
Such functors are called bifunctors. See, however, paragraph 59. The type formers + and × for
product- and sum types are examples of such bifunctors. Figure 2.1 illustrates their operation
as function combinators. Proving the generalized functor properties idA × idB = idA×B and
(f × f ′) ◦ (g × g ′) = (f ◦ g) × (f ′ ◦ g ′) using the equations from that diagram is left as a useful
exercise for the reader.

2.2 Algebras, monads and comprehensions

34 Constructors and destructors. The general pattern of data structures in Dodo is this:
some data types, such as integer, string and boolean, are defined by the underlying database
system. Dodo simply inherits them, together with functions to operate on them. Other data
types are created by applying type formers to existing types. Examples of such type formers are
×, + and functors. They are used in two ways: to construct new types A × B and to construct
new functions f × g. Type formers themselves do not provide ways to actually create or destroy
instances of the types: f × g works on an existing pair and creates a new pair. Likewise, List f
works on an existing list and creates a new list.

There are roughly three ways for a user to obtain values of a structured data type: explicit
construction, transformation of other values and having it predefined. Explicit construction of a
data type is done using its constructors. What those constructors look like depends on the type.
Sum types are constructed using inl and inr , product types are constructed using M and lists are
constructed using nil and cons operators, the first of which return the empty list while the second
prepends an element to an existing list.

Constructing values explicitly is common for “small” data types like sum types and product
types, but not for types like List. Values of such types are more often created by transforming
existing values, i.e., sorting a bag or squaring the elements of a list of numbers. Of course, in the
end such transformations are defined in terms of explicit construction, but from a user point of
view, this is not visible. The question remains however, where the values being transformed come
from. Sometimes, they may be explicitly constructed, but usually database queries over complex
data structures start with data stored in the database. The example schema (1.5) illustrates how
the schema defines a nested Bag structure directly in terms of data stored in the database, without
reference to constructor functions.

35 Abstract data types. Recall the way lists of integers are defined, denoted L: there are
two operations

1. nilL : 1→ L, returns an empty list;

2. consL : Z× L→ L, prepends a number to a list.

Different combinations of nils and conses yield different lists, and every list can be constructed
using nilL and consL. Functions on lists can be defined by induction to the nil/cons construction
of an argument, e.g.

f (nil †) = f [ ] = e,

f cons(x , `) = x ⊕ f `

for suitable e and ⊕. To calculate the sum of the numbers in the list, one could take e = 0 and
⊕ = +. The reader is encouraged to verify this by hand.

As another example of a data structure, bags of integers, denoted B , are defined using the
same two kinds of operation, with in addition the equation

cons(x , cons(y, `)) = cons(y, cons(x , `)), (2.3)

which expresses the indifference of bags towards the order in which elements are inserted. With
lists, there was a one-to-one relation between the elements of L and the nil/cons-trees. With bags,
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there is a one-to-one relation between elements of B and the equivalence classes induced on the
trees by equation (2.3).

In general, abstract data types are modelled as an algebra: a base type together with a finite
collection of operators. An algebra with laws is an algebra that additionally carries equations that
govern the behaviour of its operators.

36 Combining operators into one. Using sum types, it is possible to combine nil and cons
into a single operator

τ = nil O cons : 1 + Z× L→ L.

The usefulness of this will soon become apparent. Combining is a reversible process. The original
operators can be recovered using the inl and inr operators defined for sum types:

nilL = τ ◦ inl ,

consL = τ ◦ inr ,

as follows from the law h = (h O j ) ◦ inl implied by figure 2.1. The reader is encouraged to verify
this on a piece of paper.

37 Definition (Algebra). Given a functor F, an F-algebra is a function τ : FA→ A. In this
definition, F represents the “signature” of the algebra. The example algebra has two operators:
nil a constant one and cons taking a number and a list. Accordingly, τ = nil O cons has type
1+Z×L→ L, which can be written INS L→ L if we define the functor INS by INS X = 1+Z×X
and INS f = id1 + idZ × f . Another example of an INS-algebra is the function 0 O (+) of type
1+Z×Z→ Z = INS Z. In this example, (+) : Z×Z→ Z is addition, and 0 : 1→ Z is the constant
function (λz • 0). Again, the reader is encouraged to verify that 0 O (+) is indeed an INS-algebra.

The name INS is derived from insert algebra, referring to the property that list values are
constructed by starting with the empty list and inserting elements. An alternative representation
for lists and bags would be using nil : 1→ L, tip : Z→ L and concat : L× L → L. This is called
a union algebra because now the fundamental operation is concatenation (union). Union algebras
have signature functor UN X = 1 + Z + X ×X .

The class of F-algebras for a functor F is written Alg(F). The class of F-algebras that satisfy a
set of equations E is written Alg(F,E ). Informally, an algebra a O op satisfies, say, equation (2.3)
if substituting nil = a and cons = op yields a valid equation.

38 Algebras with equations. In this paragraph we give a more formal definition of what it
means for an algebra to satisfy an equation. Readers satisfied with the informal definition given
above may skip this paragraph. For a full treatment of this subject, see [6].

We will write equation (2.3) in the form T τ = T ′ τ with τ = nil Ocons . Here, T τ and T ′ τ are
functions that take a value (x , (y, `)) and turn it into cons(x , cons(y, `)) and cons(y, cons(x , `)),
respectively. Examples of Transformers T and T ′ that do this are

T φ = φ ◦ inr ◦
(

exl O (φ ◦ inr ◦ exr)
)

,

T ′ φ = φ ◦ inr ◦
((

exl ◦ exr
)

O

(

φ ◦ inr ◦ (exl O (exr ◦ exr))
))

.

In these intimidating looking definitions, the inr serves to select the proper sub-operation of φ,
i.e., cons if φ = nil O cons . The exls and exrs serve to shuffle the x , y and ` of the argument into
the proper positions in the equation. Any equation can be captured as a pair (T ,T ′) of suitable
transformers. We say that an algebra α satisfies (T ,T ′) when the equation T α = T ′ α holds.

39 Definition (Homomorphism). Many interesting operations can be regarded as a homo-
morphism between algebras. Let σ : FA→ A and τ : FB → B be F-algebras. A function h : A→ B
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is an F-homomorphism from σ to τ , denoted h : σ →F τ , if h ◦σ = τ ◦F h. Pictorially, this equation
reads

FA
σ

Fh

A

h

FB
τ

B

Homomorphisms have composition and identity: if f : β →F γ and g : α→F β are homomorphisms,
then f ◦ g is a homomorphism α→F γ.

40 Examples. A homomorphism well known from calculus is the exponentiation function exp :
R→ R. To see this, take F X = X ×X with F f = f × f and notice that the operations (+) and
(×) are F-algebras:

(+) : FR→ R;

(×) : FR→ R.

Moreover, exp has the property that exp(x + y) = exp(x )× exp(y). In point-free form, this reads
exp ◦(+) = (×)◦Fexp, which is exactly the definition of an F-homomorphism. In the world of data
types, the well-known function sum : L→ Z is an INS-homomorphism (nilL OconsL)→INS (0O(+)).
The following two diagrams demonstrate how the homomorphism equation

sum ◦ (nilL O consL) = (0 O (+)) ◦ INS sum

holds for both the nil - and the cons-case of the list data type:

inl †
nilOcons

id1+idZ×sum

[ ]

sum

inl †
0O(+)

0

inr(2, [3, 5])
nilOcons

id1+idZ×sum

[2, 3, 5]

sum

inr(2, 8)
0O(+)

2 + 8

(2.4)

Especially note how in the right-hand diagram, the arrow F sum = id1 + idZ × sum recursively
applies sum to the sublist [3, 5].

41 Definition (Initiality). An algebra τ in Alg(F,E ) is initial if there exists precisely one
homomorphism τ →F σ for every σ in Alg(F,E ). This unique homomorphism is written (|τ →
σ|)F,E , abbreviated to (|σ|)F,E or even (|σ|). Homomorphisms from an initial algebra are called
catamorphisms.

Lemma 43 provides a perhaps more intuitive interpretation.

42 Definition (Type functor). A type functor is a functor T for which an initial algebra τ :
F TA → TA exists. Note that the choice of F must be inferred from the context. In this report,
it will usually be INS.

43 Lambeks lemma. An algebra τ : FA → A is initial in Alg(F,E ) if and only if is is a
bijection between E -equivalence classes of F-trees and values in A. For example, in paragraph 35
we saw that every list can be written using nilL and consL in exactly one way. We also saw that in
the case of bags, every bag corresponds to precisely one [cons(x , cons(y, `)) = cons(y, cons(x , `))]-
equivalence class. In contrast, the algebra (0 O (+)) : FZ → Z is not initial in Alg(F, eqn. (2.3)):
the number 5 can be written in different ways that are not (2.3)-equivalent:

5 = 2 + 3 = (0 O (+)) (inr (2, 3)),

5 = 1 + 4 = (0 O (+)) (inr (1, 4)),

. . .
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44 Obtaining initiality. When a functor F is polynomial, i.e., when it can be expressed
completely in terms of sum-, product, constant and identity functors, Alg(F,E ) has an initial
algebra. This covers most of the algebra signatures we come across in practice, INS in particular.
The algebra nilL O consL is the initial INS-algebra. The algebra nilB O consB is the initial algebra
under equation (2.3).

Second, an algebra τ initial in Alg(F,E ) is also initial in Alg(F,E ∪ E ′). A proof for the
case E = ∅ can be found in [6], paragraph 39 on page 60. We are not aware of a proof for the
general case. We use this in paragraph 57.

45 Initiality in operation. The pictures in paragraph 40 suggest that sum functions as
if every cons is replaced by a (+) and every nil by 0. This property holds for catamorphisms
in general. Catamorphisms are exactly the functions that can be expressed by induction to the
recursive construction of their arguments.

To see this, consider an arbitrary catamorphism h = (|σ → τ |)F in Alg(F). Because h is a
homomorphism, we have

h ◦ σ = τ ◦ F h.

Initiality implies bijectivity, therefore,

h = τ ◦ F h ◦ σ−1.

Specializing to F = INS for greater familiarity, h = τ ◦ (id1 + idZ × h) ◦ σ−1 as applied to a
value v can be expressed in three steps. The first step σ−1 essentially maps v either to inl †
or inr(x , xs), depending on whether v is constructed using nil or cons , respectively. The final
step τ replaces inl by, say, 0 and inr by (+). The middle step ensures that this procedure is
applied to every position in the nil/cons decomposition of v . This argument can be generalized
to general F-homomorphisms and also to algebras with laws.

46 Use of initiality. Two common things to express as a catamorphism are conversions
(“casts”) and aggregate functions. Given a list, we can apply the catamorphism (|nilB O consB |)
to it to obtain a bag. This is a conversion. We can also apply (|0 O (+)|) to calculate the sum of
the numbers in the list. This is an aggregate function. Writing sum as a catamorphism clearly
exposes its structure: one initial intermediate result 0 and one function (+) that takes a value and
an intermediate result. Readers familiar with functional programming will surely recognize this
familiar fold -pattern. In the sequel, catamorphisms will be indispensible in the implementation of
the comprehension syntax. We will define List [f x | . . .] comprehensions, and also Sum[f x | . . .]
comprehensions. The only difference between them is that when they are rewritten to point-free
form, the former uses a (|nil Ocons |) catamorphism, where the latter uses a (|0O(+)|) catamorphism.

There are several useful laws about catamorphisms, the most obvious of which reads

h : α→F β =⇒ h ◦ (|α|)F,E = (|β|)F,E .

Given τ : FA → A initial in Alg(F,E ), this theorem uses the uniqueness and existence of the
homomorphism (|φ|)F,E for every φ to simplify compositions of homomorphisms that start in τ .
Although the peculiarities of the Dodo approach introduce some interesting complications, this
law can be useful for for deriving alternative query plans.

This theorem and some similar ones are collectively known as fusion theorems because they
combine multiple homomorphisms into one. More on the application of fusion in Dodo can be
found in paragraph 54.

47 Polymorphism. In the preceding paragraphs we talked about the type L of lists of integers
and used it to illustrate the concept of an algebra, homomorphism, etc. But in section 2.1 we
introduced the List functor which could construct list types over arbitrary types, not just over
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integers. To extend the algebra concept to parametrized types, we need to fix the signature
functor INS. Until now, we defined the INS functor as

INS X = 1 + Z×X ,

INS f = id1 + idZ × f ,

and the “list of integers” type as the carrier of the initial INS-algebra τ : INS L → L. With this
definition, the integer type Z is hard-coded into INS. We solve this by making INS a bifunctor,
with the additional parameter being the element type:

INS(A,X ) = 1 + A×X ,

INS(f , g) = id1 + f × g.

The homomorphism condition h ◦ τ = σ ◦ Fτ is reformulated to h ◦ τ = σ ◦ F(id , h). With these
modifications, we again define the List type former to yield the carrier of the initial algebra in
Alg(INS), i.e.,

τA : INS(A, List A)→ List A.

When no confusion can arise, we de-emphasize the dependence on the element type by writ-
ing INSAX or even INS X instead of INS(A,X ).

48 Comprehension examples. Comprehension notation provides a convenient way to write
down collection values and aggregations. A comprehension expression M [ | . . .] consists of a
comprehension name, a head and a sequence of qualifiers. The comprehension name is required;
in contrast to other literature and programming languages, the notation [ | ] has no meaning in
itself. Examples of comprehensions with xs = [1, 2, 3] are

List [x 2 | x ← xs ] = [1, 4, 9],

Sum[x 2 | x ← xs ] = 1 + 4 + 9 = 14,

List [x + y | x ← xs , y ← xs ] = [2, 3, 4, 3, 4, 5, 4, 5, 6],

List [x + y | x ← xs , y ← xs , x < y] = [3, 4, 5]

Set [x + y | x ← xs , y ← xs ] = {2, 3, 4, 3, 4, 5, 4, 5, 6}

= {2, 3, 4, 5, 6}.

On the right-hand side of the List comprehension, the spacing suggests a grouping of the elements
in three sublists, the first corresponding to x = 1, the second to x = 2 and the third to x = 3.
One can imagine the list [2, 3, 4, 3, 4, 5, 4, 5, 6] to have been formed by first generating

List [List [x + y | y ← xs ] | x ← xs ]
= [List [1 + y | y ← xs ],List [2 + y | y ← xs ],List [1 + y | y ← xs ]]
= [[2, 3, 4], [3, 4, 5], [4, 5, 6]]

(2.5)

and then crossing out the inner brackets to yield [2, 3, 4, 3, 4, 5, 4, 5, 6]. We will use the monad
concept to make this more precise.

49 Definition (Monad). A T-monad is a triple (T, unit , unnest) with T a type former and
unit and unnest families of functions unitA : A→ TA and unnestA : TTA→ TA that satisfy the
equations in the following commutative diagrams:

TA
unitTA

idTA

TTA

unnestA

TA
TunitA

idTA

TA

TTTA
TunnestA

unnestTA

TTA

unnestA

TTA
unnestA

TA

(2.6)
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The intuition here is that unitA adds an extra level of nesting while unnest removes one. As an
example, consider

T = List,

unitA x = [x ],

unnestA [[a1, . . . , an ], . . . , [z1, . . . , zm ]] = [a1, . . . , an , . . . , z1, . . . , zm ]

It is interesting to try out the equalities from (2.6) on this monad:

[1, 2]
unitTA

idTA

[

[1, 2]
]

unnestA

[1, 2]

[

[1], [2]
]

unnestA

[1, 2]
TunitA

idTA

[1, 2]

[[

[1], [2, 3]
]

,
[]]TunnestA

unnestTA

[

[1, 2, 3], [ ]
]

unnestA

[

[1], [2, 3]
] unnestA

[1, 2, 3]

50 Definition (Monad with Zero). A monad with zero (T, unit , unnest , zero) is a T-monad
with an additional function zero : X → TA that returns an “empty” T. As zero ignores its
argument, any type X will do. The zero function must satisfy

TTA

unnestA

TX
T zeroA

zeroA

TA

X
zeroTA

zeroA

TTA

unnestA

TA

The obvious zero candidate for List is zero x = [ ], which indeed satisfies the equations:

[[ ]]

unnestA

[3]
T zeroA

zeroA

[ ]

3
zeroTA

zeroA

[ ]

unnestA

[ ]

51 Comprehension syntax. The Dodo comprehension syntax demonstrated in paragraph 48
consists of three parts. First, the name of the comprehension type, i.e., List. Second, the head of
the comprehension, i.e., x 2 or x + y. This describes the constituents of the new value in terms of
variables bound in the third part, the tail. The tail consists of generators and filters. Generators
bind variables, and filters impose conditions on the values of the variables. Generators are of the
form name ← value, where value must have type TA with T a type functor.

A comprehension type M is a pair (µ, (T, unitM , unnestM )) of an F-algebra µ : F TA → TA
and a T-monad. The semantics of comprehensions is given by translating to comprehensionless
syntax according to the following rules:

• A comprehension M [e | ] is rewritten to (unitM e). So, List [3 | ] = unitList 3 = [3].

• A comprehension M [e | x ← xs ] with xs : T′A is rewritten to (|µ|)(T′(λx • e) xs). So,

Sum[x 2 | x ← xs ] = (|0 O (+)|) (List (λx • x 2) xs)

= (|0 O (+)|) [1, 4, 9] = 1 + 4 + 9 = 14.

• As hinted at in paragraph 48, a comprehension M [e | qs , qs ′] where qs and qs ′ are parts
of the tail is rewritten to unnestM M [M [e | qs ′] | qs ]. So, first an intermediate result is
generated that contains an extra level of nesting, then the nesting is removed using unnest .
Referring back to equation (2.5),

List [x + y | x ← xs , y ← xs ]
= unnestList List [List [x + y | y ← xs ] | x ← xs ]
= unnestList [[2, 3, 4], [3, 4, 5], [4, 5, 6]]
= [2, 3, 4, 3, 4, 5, 4, 5, 6]

(2.7)
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• Finally, if M has a monad with zero, M [e | b] with b a boolean expression is rewritten to

if b then unitM e else zeroM e fi.

Using these four rules, every Dodo comprehension is transformed into an equivalent expression
that does not use the comprehension syntax.

52 Common Comprehensions. Every type functor gives rise to a comprehension type. Let
T be a type functor with corresponding initial INS-algebra τ = nil O cons . Then we define the
monad type T to be (τ, (T, unitT, unnestT, zeroT)) with

unitT x = cons(x ,nil †),

zeroT z = nil †,

unnestT xs = (|nil O concat |) xs ,

where
concatT (xs , ys) = (|ys O cons |) xs .

This gives comprehension syntax for data types that can be expressed in insert notation, such as
the collection types list, bag and set. It can readily be generalized to algebras of other signatures,
such as union representation,

Comprehension for aggregates are defined using an Id-monad. For instance, the function 0O(+)
has type INS IdA→ IdA. In such a case we define the Sum comprehension type as

((|0 O (+)|), (Id, unit = id , unnest = id , zero = 0)).

Because A = IdA = Id IdA, the unit and unnest functions do nothing.

2.3 Application in Dodo

53 Mapping to storage layout. In the nested data model, data types are defined in terms
of constructor algebras like τ = nil O cons . But the point of Dodo is that they are actually stored
in a very different, flattened way. Data types are added to Dodo in the form of extensions. The
extension writer specifies the flattened level storage layout using columns (binary relations) and
defines a mapping from nested level operations to flattened level operations. The extension writer
should choose the storage layout in such a way that nesting-related operations such as unnest map
onto relatively efficient relational operations such as semijoins. In paragraph 17 we already saw
an example of such a mapping.

54 No arbitrary catamorphisms. As a consequence of storing data in a flattened form,
Dodo cannot evaluate arbitrary catamorphisms. If the data is stored in a nested form, then it is
always possible to take two arbitrary functions f and e of suitable type and walk the INS -structure,
performing an e operation on nil -nodes and an f operation on cons nodes. This is nested loop
processing, so its use is discouraged, but as a last resort it can be done. But Dodo does not store
its data according to its algebraic structure, it stores it as a bunch of columns grouped in a frame.
Consequently, the operations it can perform on it are only those column/frame operations that
are provided by extension writers.

In paragraph 46 we mentioned theorems that can be used to combine adjacent catamorphisms
and homomorphisms, eliminating the materialisation of an intermediate result. The risk is, how-
ever, that we end up with a catamorphism for which no column/frame equivalent is known. De-
termining how the theorems can still be used without losing the capability of breaking the fused
catamorphisms up again into known frame operations is an interesting line of future research.
Paragraph 56 sketches a couple of elementary optimizations that are possible using a tool called
the homomorphism graph, which is useful because Dodo cannot do without this homomorphism
graph anyway.
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55 Homomorphism graph. In order to express catamorphisms such as (|µ|) from para-
graph 51 in terms of known operations, Dodo maintains a homomorphism graph. The nodes
of this graph are algebras. Algebras are connected by an arc if Dodo knowns a homomorphism
between them. If the homomorphism is actually implemented in an extension, the arc is labeled
with the name of the implemented function. Anonymous arcs can be used for optimization but
cannot occur in the final query plan because Dodo does not have an implementation for them.

Exactly how the algebras are represented depends on the implementation. One can imagine
naive Dodos storing algebras simply as a name, and sophisticated Dodos storing them in a more
detailed representation that makes it possible to derive more optimizations. For a first attempt,
it seems sufficient to represent the algebras as user-provided names, just like we often use greek
letters instead of O formulas in the examples. However, there is one exception: if τ is an initial
F-algebra for a type T, then the lifted function Tf can be expressed as (|τ ◦F(f , id)|). Using fusion
theorems (paragraph 46) it can be shown that if h is an homomorphism τ →F β, it is also an
homomorphism τ ◦ F(f , id) →F β ◦ F(f , id) for any f . Because lifted functions are so common, it
seems that adding a representation for φ◦F(f , id) will make the homomorphism graph much more
useful.

56 Homomorphism graph optimizations. The homomorphism graph can also be used for
simple optimizations. Consider the following system:

ρ

lb

τ
T f

lb

rev
τ ◦ F(f , id)

lb

β
B f

sum

β ◦ F(f , id)

σ

(2.8)

with τ declared the initial F -algebra and β the initial (F,E )-algebra. Assume that E = {(2.3)}
expresses the indifference of an algebra towards the insertion order of its elements. We briefly
describe every arc in the graph and justify why it is reasonable Dodo is made aware of it.

The function sum : BZ → Z is an homomorphism β →F σ. Therefore, sum = (|σ|)F,E .
Likewise, we have the list reversal function rev = (|ρ|)F : TA → TA and the conversion function
lb = (|β|)F : TA → BA. That these functions are indeed homomorphisms cannot be checked by
Dodo. They are just declared as such by the extension writer.

The dashed arrow from τ ◦ F(f , id) to β ◦ F(f , id) expresses the fact referred to in the previous
paragraph that first transforming the elements one by one (T f ) and then converting to a bag (lb)
is equivalent to first converting to a bag (lb) and then transforming the elements (B f ). This is a
useful rule to have built-in to the system because lifting a function f to T f occurs so often.

Finally, reversing a list and then converting to a bag is a waste of time. The definition of
commutative diagrams (page 14) together with the existence of an arrow lb : ρ →F β expresses
that every composition lb ◦ rev can immediately be replaced by just lb.

Now consider the query Sum[f x | x ← rev xs ], which in time gives rise to the query fragment

(|σ|)F ◦ T f ◦ rev .

Looking at the graph, Dodo notices that (|σ|)F : τ →F σ can be written sum ◦ lb, yielding

sum ◦ lb ◦ T f ◦ rev .

The fragment lb ◦ T f connects τ to β ◦ F(f , id) and there is another route: B f ◦ lb, allowing us
to write

sum ◦ B f ◦ lb ◦ rev .
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Applying the same trick again, we replace lb ◦ rev by a shorter path from τ to β: just lb. In the
resulting query, no list reversal is performed, and it is also conceivable that operating on bags is
cheaper than operating on lists because we no longer need to keep track of the ordering. This
concludes our brief example of optimizations using the homomorphism graph.

57 No Bag type needed. In example 56, the function sum was defined on bags. Initiality
allowed Dodo to derive a (|σ|) for lists, and because the extension writer had declared lb to also
be an homomorphism from ρ to β we could simplify the expression considerably. The question is:
could we also have done this if no convenient bag type had been available? The answer is yes.

In paragraph 56 we picked the algebra β : INSBA → BA as a convenient initial object of
Alg(INS,E ), where E = {(2.3)} represents indifference to order. If there is no bag type available,
we can just use another initial (INS,E )-algebra.

Paragraph 44 promises the existence of an algebra τ ′ that constructs lists just as τ does, but
with the added promise that the order of the elements in the list shall never be considered. The
catamorphism (|τ → τ ′|) can be implemented as id because the underlying implementation remains
the same. The updated homomorphism graph becomes

ρ

id

τ
T f

id

rev
τ ◦ F(f , id)

id

τ ′
B f

sum

τ ′ ◦ F(f , id)

σ

(2.9)

58 Weakness of homomorphism graph optimizations. The primary purpose of the
homomorphism graph is to derive implementations for catamorphisms. The optimization (|σ|)◦Tf ◦
rev = sum◦Bf ◦ lb looks very nice but may lead the reader to expect more than the homomorphism
graph is able to provide. For instance, it is hard to see how laws such as rev ◦ Tf = Tf ◦ rev can
be derived from it.

59 No full bifunctors. Functors take a function and lift it to another type. Similarly,
bifunctors take a pair of functions. However, to simplify the intermediate query representation
used in section 3.3, we will not allow bifunctors in the prototype. Instead of writing f × g and
f + g, we define functors onl , onr , ifl and ifr in such a way that

f × g = (f × id) ◦ (id × g) =: onl f ◦ onr g,
f + g = (f + id) ◦ (id + g) =: ifl f ◦ ifr g

(2.10)

and use these instead. To support O and M, we also need ∇ : X + X → X and ∆ : X → X × X
defined as

∆x = (x , x )

∇x =

{

x1 if x = inl x1,
x2 if x = inr x2.

These definitions allow us to write f O g = ∇ ◦ ifl f ◦ ifr g and f M g = ifl f ◦ ifr g ◦∆. The names
onl and onr have been chosen because they apply a function on the left- or right side. Likewise,
ifl and ifr apply a function if their argument is left-handed or right-handed, respectively.

The functions ifl , ifr , onl and onr are functors but not type functors: they have no initial
algebra even though their bifunctor counterpart obviously has.
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60 Summary. In this rather heavy-going chapter we first described the type system for the
nested-structures part of Dodo. It is used for the query language, the intermediate point-free
representation and for the frames as they fit into point-free form. The column expressions within
the frames have their own type system, described in section 3.1.

After describing the way data types can be combined into new types, we looked at how values
of those types can be constructed. Using sum types, the algebra of constructors for a type can
be combined into a single function τ : FX → X , which we use for our formal definition of an
algebra. Algebras with equations can be modelled by building a pair (T ,T ′) of transformers that
each transform an algebra into an equation term. Using this pair we can tell whether an algebra
satisfies the equation. Just like functions can be regarded as arrows between sets, homomorphisms
are arrows between algebras. Some algebras α, including the algebras that correspond to data
types, have the property that there is exactly one outgoing arrow (a catamorphism) for every
algebra β in the same class. This is a very important property because it implies that the operation
of these homomorphisms is completely determined by the target algebra and the recursive structure
of its argument. The Fusion Theorems allow one to combine adjacent catamorphisms into one,
potentially allowing a more efficient query.

Initiality and catamorphisms play an important role in the definition of the comprehension
syntax. We give a translation scheme based on that in [8] that translates comprehensions into a
chain of unit , unnest and catamorphism applications. The catamorphisms are used to aggregate
the values in the comprehension or to convert from one collection type to another.

We end the chapter by discussing the role all this plays in Dodo. First we remind the reader that
Dodo only pretends to build data structures using their constructor algebra because the data is
actually stored in a flattened way. As a consequence, Dodo can only perform those catamorphisms
that it can patch together out of homomorphisms defined on the flattened storage of the data
structures. We introduce the homomorphism graph as a simple tool to derive a chain of defined
operations for catamorphisms and demonstrate that it can also be used for simple optimizations.
More optimizations are possible with a more detailed representation of the algebras in the graph
that allows the use of fusion theorems.
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Chapter 3

Language

This chapter describes the Dodo Query Language, the Frame/Column language and the translation
to point-free form. Although these were presented in chapter 1 as two separate languages, they are
in fact two faces of the same language, which we shall refer to as the Dodo language. The Dodo
Query Language is the part of the language that expresses solely the nested structures described in
chapter 2. The Frame/Column language is the part that deals with the flattened nested structures.
During rewriting, the expression contains a mixture of the two sublanguages. Rewrite rules are
applied until the expression is completely expressed in the Frame/Column sublanguage.

In the first section we first have a look at the column type system. Then we list all syntactic
constructs of the Dodo language and the corresponding type rules. In the third section we describe
the translation scheme that translates all expressions to point-free form.

61 Expressive power. Dodo implements a first order typed λ-calculus without an Y -operator
or similar. This means that it cannot directly express recursive functions; such functions are hard
to define in terms of column- and frame transformations. Consider a function that walks a list
by pattern matching on its nil , cons-structure. In general it would be very hard to translate this
function into something that takes a frame representing the list and constructs a frame representing
the result. Higher-order functions and recursive functions can only be defined in Dodo if their
semantics are expressed in terms of rewrite rules on frames. In the case of recursive functions on
data types this means declaring catamorphisms from one algebra to another. Higher-order lambda
terms are not permitted.

As an example of a higher-order function defined using a rewrite rule consider the List functor.
Assume that lists are implemented as frames list〈d , r ,F 〉 with d and r columns and F a frame.
If the rewriting scheme explained in paragraph 16 encounters a composition

Listf ◦ list〈d , r ,F 〉,

it uses the rewrite rule accompanying List to transform this into

list〈d , r , (f ◦ F )〉.

62 Predefs. An identifier declared in an extension and defined in terms of a rewrite rule that
works on or at least produces frame expressions is often called a predef. Examples of identifiers
that are not predefs are names bound by let, lambda terms or comprehensions.

3.1 Column type system

63 Column types. Columns are sets of pairs, each consisting of a head and a tail element of
primitive type. All heads have the same type, and so do the tails. The type of a column consists
of its head- and tail type, together with flags that indicate
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• that the head (tail) elements are all distinct;

• that they are complete, ie., that every meaningful value in the domain is present as a head
(tail);

• that every head is equal to its tail.

A column with head type K and tail type L is denoted RK−L. Partial functions, i.e., columns
where all heads are distinct, are written RK→L. Columns with distinct tails are written RK←L,
and head-complete and tail-complete columns are written RK 7−L and RK−7L, respectively. Finally,
all tails being equal to the heads can be indicated by replacing the tail type with an = symbol:
the column idunit = {(†, †)} has type R1 7↔7=. The arrow ornaments can be combined, allowing
us to write RK 7→L for total functions from K to L. We use the arrows as subscripts to the letter
R to avoid confusion with the arrows used by function types in the nested-structure layer of the
type system. There, the arrow → denotes a total function rather than a partial function.

A column expression usually denotes a column, i.e., a value of type RK−L as described above.
However, sometimes we need to represent a single value of type K . Such singular column values
mostly arise as arguments to an operator, i.e., settail(some col , 3). Therefore we extend the type
system for the column layer with the possibility of a simple primitive type K . In paragraph 64 we
introduce the convention of using the letters X and Y to denote either primitive types or columns.

64 Type letters. Primitive types are usually denoted using the letters K , L and M . The
letter M is also used for monad types. We write greek letters α, β, . . . if subsets are allowed, see
section p:partitionprim. For types formed using primitive types and the type formers listed in
section 2.1 we use the letters T and S . In the common case where function arrows→ do not occur
in the type, we write A and B . Therefore, the type A→ B denotes the set of first-order function.

As described above, column types are written Rα−β . In frame expressions, the components of
the frame can be either columns or expressions of type α→ A. In cases where an expression can
have either of these types, we use the letter X .

Algebras are also often written as greek letters. In practice, this does not lead to confusion.

65 Partitioning primitive types. Consider the implementation of sum types A + B . We
represent functions F : K → A + B as frames

F = either 〈G,H 〉

where G : K1 → A and H : K2 → B with K = K1∪K2 and K1∩K2 = ∅. The question is: how can
we represent this in the type system? A related question: with c : Rα→β = {(α1, β1), . . . , (αn , βn)}
a column and F : β → A = {β1 7→ a1, . . . , bk 7→ ak} a frame, we will soon introduce the
construct c ∗ F : α → A, a frame representing the function {x 7→ z | (x , y) ∈ c, (y, z ) ∈ F}. If
column c is complete, that is, if every x ∈ α occurs as a head in c, then the domain of c ∗ F is
obviously α. But what is the domain if c is not complete? The best we can say is that the domain
of c ∗ F is a subset of α. The latter question is a typical example of the problems occuring at the
boundary between functions and general relations: not every element of its domain or range need
occur in a relation. An extreme example of this is the empty relation ∅. We need a way in the
type system to reason about unions and subdivisions of sets.

The Dodo type system allows primitive types to have a subset indicator. Syntactically, this
looks like α[pq + r ]. In a subset indicator, a letter p stands for a subset, a juxtaposition pq for
an intersection, and p + q stands for a union. We write α[p] = α \ α[p] and the indicator 0 and 1
represents the empty and complete set: α[0] = ∅ and α[1] = α. All laws suggested by this notation
hold, i.e., p(q + r) = pq + pr and 0 + p = p = p + 0. Moreover, subsets of subsets can be obtained
using the law α[p1 + · · ·+ pn ][q1 + · · ·+ qm ] = α[(p1 + · · ·+ pn)(q1 + · · ·+ qm)].

All indicator expressions can be reduced to a normal form in which the indicator is a disjunction
of terms, each of which is a a conjunction in which every letter occurs, i.e., the normal form of
α[p + q] is

α[p + q] = α[p1 + 1q] = α[p(q + q) + (p + p)q] = a[pq + pq + pq].
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The reason we require every letter to occur is that this way, α is split into a collection of disjoint
subsets that are atomic in the sense that they cannot be subdivided using p and q. Union
and intersection of two two subsets of α can now be determined purely using the terms in their
respective subset indicators:

α[p] ∪ α[q] = α[pq + pq ] ∪ α[pq + pq] = α[pq + pq + pq].

66 Unification of subset indicators. Type inference typically proceeds by assigning each
node in the parse tree a very general type and then determining the most general type substitution
that allows the nodes to fit together. In the absence of subsets, unification of types formed by the
type formers in section 2.1 is straightforward, but with the addition of subset types, we need a
new rule.

Consider the identity
α[x1 + · · ·+ xn ] = α[y1 + · · ·+ ym ].

We assume that the two subset indicators have already been made compatible as in the previous
paragraph. The sets may have some terms in common. Without loss of generality we assume that
they have the first k terms in common, giving

α[x1 + · · · xk + xk+1 + · · ·+ xn ] = α[x1 + · · · xk + yk+1 + · · ·+ ym ].

Each of the indicators x1, . . . , xn , yk+1, . . . ym denotes a distinct disjoint subset of α. From xk+1,
. . ., xn only occurring on the left hand side and yk+1, . . . , ym only occurring on the right hand side
we can immediately derive the minimal indicator substitutions that make the equation true:

xi = 0 for i = k + 1, . . . ,n,

yi = 0 for i = k + 1, . . . ,m.

3.2 Syntax

In this section we list all syntactic constructs of the Dodo language, usually together with a typing
rule. The constructs are grouped by type. Constructs that construct a value of a type that in
paragraph 64 would get the letter A are described in paragraph 68. Constructs that build values
of the more general type T are in paragraph 69. The constructs in paragraph 70 always construct
first-order functions A → B . The final two paragraphs construct frames (type α → A) and
columns (type Rα−β), respectively.

Conceptually, everything in these paragraphs can be regarded as part of a huge context free
grammar starting with e ::=. It is tempting to attempt to put more syntactical structure in it by
putting, say, the frame constructs in their own kind of nonterminal. This looks nice if one only
considers the nested-structure-only expressions that go into the rewrite process and the frame-only
expressions that come out of it, but it makes the mixed trees that occur during the rewrite process
very hard to describe. The most striking example is that after rewriting, a frame only has columns
and frames in it, but during rewriting it is allowed to contain any expression that can conceivably
be translated to a frame, that is, every expression of type α→ A. Because of these issues, we just
call everything an expression and use the type system to impose structure on it.

67 Identifier syntax. The prototype uses a peculiar format for identifiers. Identifiers consist
of letters, digits and underscores, but they may also contain {*} substrings, where the star denotes
a sequence of any printing character except }. This permits identifiers like op {=}. We take this
approach because it is a cheap way to obtain a very large namespace with room for avoiding name
clashes. This is useful because we often would like to use the same name, i.e., equal , at both the
nested-structure level, the column level and in the underlying system. In paragraph 73 we make
another concession to this problem by prefixing all column names with an exclamation mark.
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Also, due to the way the prototype is constructed, extensions can define identifiers dynamically.
That is, extensions need not provide a complete list of the identifiers they provide, instead an
extension can decide to respond to all identifiers that, say, match the pattern label *. This can
be used to implement the labeling functors mentioned in paragraph 25. These dynamic symbol
tables are not an essential part of the Dodo approach but they do provide many possibilities to
work around its deficiencies.

68 Value building constructs. The following syntactical constructs can be used to construct
simple values, i.e., values of a type A, not X → Y .

k : K literal

let x = e in e ′ : A abbrev. for (λx • e ′) e if e ′x :=e : A

(e, e ′) : A× B pair formation if e : A and e ′ : B

if b then e1 else e2 : A conditional if b : B and e1 : A and e2 : A

M [e | ] : TA monad-comprehension if e : A

M [e | x ← e ′] : TB monad-comprehension if ex :A : B and e ′ : T′A

with τ init. algebra for T′

and (|τ → µ|) well-defined

M [e | b] : TA monad-comprehension if e : A and e ′ : B

M [e | q, qs ] : TA monad-comprehension if M [M [e | qs ] | q] : TTA.

In this table, T is the type functor belonging to the comprehension type M , and µ is the catamor-
phism.

69 Potentially complex function builders. The following constructs may have function
types other than A→ B .

x : T identifier defined in schema or environment

f e : T function application if f : S → T and e : S

f ◦ g : T → T ′ function composition if f : S → T ′ and g : T → S

70 Simple function builders. The following construct always have first-order function
type A→ B .

λx • e : A→ B lambda term if ex :A : B

(|α→ β|) : A→ B catamorphism if α : FA→ A initial , β : FB → B

const v : A→ B constant function A arbitrary, v : B

sometimes written v

71 Frame expressions. Frames can be formed out of other frames or written explicitly.

f 〈e1, . . . , en〉 : α→ A frame if e1 : t1, . . . , en : tn ,

each ti either αi → Ai or Xi ,

and Ff (α→ A, t1, . . . , tn)

F ++ G : α→ A frame union if F : α[p]→ A and G : α[p]→ A.

c ∗ F : α→ A frame translation if c : Rα7→β and F : β → A

Every frame type f has a type predicate Ff that relates the type of its components to the
type of the whole frame. Every component should either be a column expression (type Xi) or

28



something translatable to a frame (type αi → Ai). Recall the bag frame from paragraph 10. The
predicate Fbag for the bag frame reads

Fbag(t , t1, t2, t3) ⇐⇒ t = α→ A ∧ t1 = Rα7↔7= ∧ t2 = Rα−β ∧ t3 = β → A.

In chapter 4 we abbreviate this to

bag〈Rα7↔7=, Rα−β , β → A〉 : α→ A.

Frame union combines two frames with non-intersecting domains into a combined frame. A
typical use is the ∇ operator on sum types:

∇ ◦ either 〈F ,G〉 = F ++ G.

Frame translation is used to give a frame a new domain type by composing it with the relation
between the new domain and the old. The relation c must be functional because otherwise the
translated frame no longer has function type. It must be head-complete because if a key in α is
not present in c, it is not present in c ∗F , which implies it does not conform to the total function
type α→ A.

72 The none frame. There is one special frame, the none〈〉-frame. This frame has type
∅ → X for any X and is used as a placeholder in situations where a certain subframe contains no
data. For instance, in inl ◦ f 〈· · ·〉 = either 〈f 〈· · ·〉,none〈〉〉 all the values from f go in the left-hand
slot of the either 〈〉-frame, and none〈〉 is put in the right-hand slot because no right-hand elements
are required there. The none〈〉 frame has a special property with respect to the frame union
operator:

none〈〉++ f 〈· · ·〉 = f 〈· · ·〉 = f 〈· · ·〉++ none〈〉,

for any frame f 〈〉.
Note: in the equations above, the none-frame has no components. The none-frame as defined

by the prototype has a single component e, which is an empty column. This is explained in
paragraph 91.

73 Column expressions. Column expressions denote primitive values but most often
columns. They occur only within frames expressions.

k : K literal

!x : Rα−β column name

op(c1, . . . , cn) : X prefix operator if Cop(X , t1, . . . , tn)

and c1 : t1, . . . , cn : tn

c ∗ c′ : Rα−γ semijoin if c : Rα−β and c′ : Rβ−γ

note property propagation rules below

c ++ c′ : Rα−β concatenation if c, c′ : Rα−β

dom F : Rα7↔7= domain column if F : α→ A

Literals are used in column expressions such as settail(!some col , 3). Column names are preceded
by an exclamation mark to avoid name clashes with frames; often, a frame called foo has an
underlying column for which foo would also be the natural name. Prefix operations op have a
type predicate Cop that describes the permitted argument types. The semijoin operator preserves
the column attributes: if both arguments are head-complete, then so is their semijoin. The same
holds for tail-complete, tail-distinct and (very important) head-distinct, a.k.a functional. The
concatenation operator preserves head-uniqueness if it exists, which is essential when combining,
e.g. bag domains. The domain operator takes a frame and returns it domain as a binary identity
relation. This is used together with frame translation to implement the const v construct. Let v
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be a value, either a literal or a complex value defined by the schema. Let it be represented as the
single range element of a frame F : 1→ A, in other words, let v = F †. The point-free expression
const v ◦G can be rewritten

const v ◦G = settail(dom G, †) ∗ F ,

resulting in a frame that maps every key in the domain of G to v .

74 Core predefs. In order to support the rewrite process described in section 3.3, certain
predefined identifiers are needed. Every Dodo implementation supports the unit type, sum- and
product types and the Id functor. Useful implementations also provide some primitive types to
work with other than the unit type, and typically one or more type functors that provide collection
types such as lists or bags. To support the minimal set of data types described above, we need
type formers 1, +, × and Id, and predefs for id , ∆, onl , onr , exl , exr , ∇, ifl , ifr , inl and inr
defined in section 2.1 and paragraph 59.

For every functor F, such as List or inl , the rewrite process needs a distribution function DF :
A× FB → F(A× B) that implements the following behaviour:

DF(x , xs) = F (λx ′ • (x , x ′)) xs , i.e., DList(3, [10, 20, 30]) = [(3, 10), (3, 20), (3, 30)].

Distribution functions are used in section 3.3 to “straighten out” nested subexpressions with more
than one free variable.

For type functors T Dodo needs a designated initial algebra τT that describes how to construct
values of the type. It is used as the source-algebra of a catamorphism when values of the type
are used as a generator in a comprehension. For every comprehension type M Dodo needs a
corresponding functor TM , algebra τM and zeroM , unitM , unnestM and concatM functions. As
described in paragraph 52, there are two common cases. For collection comprehensions, TM is
the type functor, τM the corresponding initial algebra, and unit , unnest and the other functions
are non-trivial. For aggregations, TM is Id, τM is the algebra that does the actual work, and
the helper functions are usually trivial. Finally, support for conditional expressions requires a
function bool2sum : B→ 1 + 1. It is used to rewrite if b then e1 else e2 fi to

(

∇ ◦
(

(λx • e1) + (λx • e2)
))

(bool2sum b).

3.3 To point-free form

In this section we define point-free form in the context of Dodo and give a translation scheme by
giving a translation rule for every syntactical construct.

75 Definition (Point-free form for Dodo). A Dodo expression is in point-free form if it has
type A→ B for simple A and B and it is a predefined function, a constant function const v with
v predefined, a composition of point-free Dodo expressions, a predefined higher-order function
operating on a point-free Dodo expression or a frame expression.

The above definition implies that frame expressions are in point-free form. This is a bit strange
but it does no harm. We go to point-free form in order to eliminate variables and other references to
individual values. Once we are in point-free form, all operations are bulk-operations. Afterwards,
as the expression is translated to a frame, the bulk operations remain. Moreover, if the user enters
a frame expression by hand, we do not attempt to eliminate it. Therefore it is reasonable in the
context of Dodo to include frame expressions in the definition of point-free form.

76 Translation scheme. Every Dodo expression of type A → B that is closed except for
identifiers defined in an extension or schema can be written in point-free form. In the following
paragraphs we show this by systematically considering every way an expression E can have such
a type. We use the bracket notation

[[

E
]]

to denote the point-free form of E .
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77 Function builders. Consider the constructs of paragraphs 70. Lambda expressions are
treated in paragraph 78. Catamorphisms are replaced by a suitable sequence of predefs found in
the homomorphism graph. Constant functions and frames are point-free already.

If E is something from paragraph 69, there are three possibilities: If E is an identifier, it
is an identifier of type A → B defined by an extension or schema, so

[[

E
]]

= E . Similarly,
[[

f ◦ g
]]

=
[[

f
]]

◦
[[

g
]]

.

In the case
[[

f e
]]

, f is a higher-order function. Therefore, f itself must be one of the constructs

from paragraph 69. If f is a predef, we can write
[[

f e
]]

= f
[[

e
]]

, which is in point-free form

by definition. If f = f1 ◦ f2 then
[[

(f1 ◦ f2) e
]]

=
[[

f1(f2(e))
]]

. If f is of the form (g h) for some
expressions g and h, then one of the identifiers in g is itself higher-order and should bring a rewrite
rule for this situation.

78 Simple lambda term. By far the most common situation is that E is of the form
E = λy • E ′ with E ′ : B a construct from paragraph 68 or 69. The translations for paragraph 68
are listed in the following table.

[[

λy • k
]]

= const k
[[

λy • let x = e in e ′
]]

=
[[

λy • e ′x=e

]]

[[

λy • (e, e ′)
]]

= onl
[[

λy • e
]]

◦ onr
[[

λy • e ′
]]

◦∆
[[

λy • if b then e1 else e2 fi
]]

=
[[

λy •
(

∇ ◦ (const e1 + const e2)
)

(bool2sum b)
]]

[[

λy • M [e | ]
]]

=
[[

λy • unitM e
]]

[[

λy • M [e | x ← e ′]
]]

=
[[

λy • (|τT′ → τM |)
(

T′ (λx • e) xs
)]]

[[

λy • M [e | b]
]]

=
[[

λy • M [e | dummy ← if b then unitM † else zeroM † fi]
]]

[[

λy • M [e | qs , qs ′]
]]

=
[[

unnestMM [M [e | qs ′] | qs ]
]]

Most of these rules only eliminate syntactical sugar such as if and comprehension syntax.
The first construct from paragraph 69, the single identifier can be handled similar to literals:

[[

λy • x
]]

= const x . As far as the rewrite scheme is concerned, a literal is nothing more than a
special kind of predefined identifier. Obviously, E ′ cannot be a composition; that would not be
type correct. The only other possibility for E ′ is a function application λy • f e. This case is
handled in the next paragraph.

In paragraph 116, an alternative rewrite rule for
[[

λy • M [e | b]
]]

is proposed:

[[

λy • M [e | b]
]]

= T (λy • e) ◦ FILTERM (λy • b)

with FILTERM defined by the equation

FILTERM f = unnestM ◦ T (λx • if (f x ) then unitM xv else zeroM x fi).

In principle, this is equivalent, however, the presence of FILTER is easier to spot than the equiv-
alent ∇, bool2sum and other operators.

79 Application within lambda. In the case λy • f e there are two possibilities. Either y
occurs free in f or it does not. If y is not free in f , rewriting is very simple:

[[

λy • f e
]]

=
[[

f
]]

◦
[[

λy • e
]]

.

The interesting case is when y does occur in f . By applying suitable extension-provided rules
to any occuring higher-order functions in f , we can assume that f is either a lambda term or a
higher-order function Σ applied to something else. In the first case we apply the reduction rule

[[

λy • (λz • e)e ′
]]

=
[[

λy • ez :=e′

]]

.
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The second case is exemplified by Σ = List. It is interesting because in λy • (List g) e, the
function g refers not only to the elements of e fed to it by the List functor, but also to the value
of y. Moreover, e can also depend on y.

In paragraph 74, we required extensions to provide a function DΣ : A×SB → Σ(A×B) defined
by DΣ(x , xs) = Σ (λz ′ • (x , x ′)) xs for every functor Σ. The rewrite rule

[[

λy • (Σ g) e
]]

= Σ (λz • gy:=exl z (exr z )) ◦DΣ ◦ onr (λy • e) ◦∆

uses these distribution functions to explicitly pair every constituent x of e with the surrounding y.
The function g is transformed into a g ′ = (λz • gy:=exl z (exr z )) that works on the resulting pairs.

We will see that in most cases, it will not be hard to map the operation of DΣ to a corresponding
frame transformation. For instance,

DBag ◦ pair 〈F , bag〈d , r ,G〉〉 = bag〈d ,mkprod(r), pair 〈prodleft(r) ∗ F , prodright(r) ∗G〉〉.

For an explanation of the mkprod , prodleft and prodright operators see paragraph 86.

80 Examples of distribution functions. The table below illustrates the behaviour of the
distribution functions for the built-in functors for products, sums and the identity functor. The
definitions in terms of frames and columns are given in chapter 4.

DId (a, b) = (a, b)

Donl

(

a, (b, c)
)

=
(

(a, b), c
)

Donr

(

a, (b, c)
)

=
(

b, (a, c)
)

Difl (a, inl b) = inl (a, b)

Difl (a, inr b) = inr b

Difr (a, inl b) = inl b

Difr (a, inr b) = inr (a, b)
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Chapter 4

The prototype

We intend to implement a small prototype of the rewrite process. This section describes in some
detail the types and rewrite rules for all the core operations from paragraph 74, plus some extra
operations needed to give a meaningful demonstration.

The operations defined in the prototype are the bare minimum needed to demonstrate inter-
esting cases. For types, that means B, Z and S types, plus List and Bag functors. Having two
primitive types makes examples much easier to comprehend because they can be used as “before”
and “after” types, i.e., to str . We have an lb : ListA → BagA operation and a sum : BagA → Z

operation, both catamorphisms between appropriate algebras. Furthermore, we define functions
any and all of type BagB → B that calculate the catamorphisms (|false O (∨)|) and (|true O (∧)|),
respectively. Together with these catamorphisms we define list-, bag-, sum-, exists- and forall-
comprehensions.

We also define an equality function eq for at least the unit type, the primitive types, sum types
and product types. Equality of bags and lists will probably be left unimplemented for the time
being.

81 Bag columns. The columns used in the prototype are bags of pairs rather than sets
of pairs, because the same is true in MonetDB. This makes surprisingly little difference to the
implementation of the frame operations in this chapter, because the use of column properties such
as head-completeness does not really change, and because we are already very careful whenever
we take the union of two sets that the sets are disjoint.

It does mean, however, that the semantics of the column operations in section 4.1 is defined in
terms of bag-braces {| |} rather than set-braces { }.

4.1 Column operators

The choice of the operations here is based on the ideas in paragraph 12. Practical considerations
may make it more attractive to have a column algebra in which domain restriction and all the
other things that are expressable using join and twin are present as explicit operators. Fortunately,
the line of thinking underlying the translation scheme does not depend on the particular form of
the core algebra.

82 Column creation. The schema defines columns identified by their name. These can be
used in queries. In this paragraph we introduce some operators useful for constructing columns by
hand. The first is colpair , which takes a pair of primitive values and returns a column containing
just this pair:

colpair(x : α, y : β) = {|(x , y)|} : Rα−β.
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The second operator is emptycol . It creates an empty column. It takes one argument, which is a
column from which it takes the type of the column to return:

emptycol(c : Rα−β) = {||} : Rα[0] 7↔7 β[0].

Having it take an “example column” argument may seem strange for a function that constructs
empty relations, but it helps avoid defining a mechanism for functions to take types as an argu-
ment. It greatly simplifies the type checker if the result type of a column operator is completely
determined by its argument types.

Among other uses, colpair is used to implement idunit = colpair(†, †), and emptycol is used to
construct the domain of the none-frame.

83 Twin and sethead. There are several operations which overwrite head and/or tail with
either a constant, head or tail.

converse(c : Rα−β) = {|(y, x ) | (x , y)← c|} : Rβ−α

sethead(c : Rα−β , v : γ) = {|(v , y) | (x , y)← c|} : Rγ−β

settail(c : Rα−β , v : γ) = {|(x , v) | (x , y)← c|} : Rα−γ

twin(c : Rα−β) = {|(x , x ) | (x , y)← c|} : Rα−=

rtwin(c : Rα−β) = {|(y, y) | (x , y)← c|} : Rβ−=

Of these functions, settail and twin preserve head-properties, sethead and rtwin preserve tail-
properties and converse switches them. Moreover, the twin and rtwin propagate the properties
also to the other attribute. To keep our type system satisfied, we also provide special twinu and
rtwinu operators that weed out duplicates:

twinu(c : RK−L) = distinct {|(x , x ) | (x , y)← c|} : RK↔=,

rtwinu(c : RK−L) = distinct {|(y, y) | (x , y)← c|} : RL↔=.

These, too, propagate completeness properties. The most important use of twinu is in constructing
frame domains.

84 Boolean operators. In the prototype, we assume that the underlying system supports
booleans (possibly represented as integers that are either zero or not) and we provide the usual
operations.

opnot (b : Rα7→B) = {|(h,¬v) | (h, v)← b|} : Rα7→B

opand (b1 : Rα7→B, b2 : Rα7→B) = {|(h, b1(h) ∧ b2(h)) | (h, x )← b1|} : Rα7→B

opor (b1 : Rα7→B, b2 : Rα7→B) = {|(h, b1(h) ∨ b2(h)) | (h, x )← b1|} : Rα7→B

We also define a column-wise equality operator on primitive values as the primary sources of
booleans:

opeq(f1 : Rα7→β, f2 : Rα7→β) = {|(h, f1(h) = f2(h)) | (h, x )← f1|} : Rα7→B.

In paragraph 102 we implement the function bool2sum : B→ 1+1 using two column operators
selecttrue and selectfalse defined such that for every f , there is an indicator p such that

selecttrue(f : Rα7→B) = {|(h, †) | (h, x )← f , x true|} : Rα[p] 7→7 1

selectfalse(f : Rα7→B) = {|(h, †) | (h, x )← f , x false|} : Rα[p] 7→7 1

The tail type is set to 1 because it gains us a tail-completeness property.

34



85 The operator mksum and friends. We have seen the frame combination operator ++.
It constructs the union frame F1 ++ F2 : α → A out of F1 : α[p] → A and F2 : α[p] → A. Every
extension that defines a new frame type must implement its version of this operation. For the
pair 〈〉 frame, this is simple: pair 〈F1,G1〉++pair 〈F2,G2〉 = pair 〈F1 ++F2,G1 ++G2〉. But consider
bag〈d1, r1,F1〉++ bag〈d2, r2,F2〉 with

d1 : Rα[p]→=, d2 : Rα[p]→=,
r1 : Rα[p]−β , r2 : Rα[p]−γ ,
F1 : β → A, F2 : γ → A,

Note that because element frames F1 and F2 have different domain types β and γ, we cannot
simply concatenate them together. We rewrite bag〈d1, r1,F1〉++ bag〈d2, r2,F2〉 into

bag〈d1 ++ d2,mksum(r1, r2), sumleft(r1, r2) ∗ F1 ++ sumright(r1, r2) ∗ F2〉,

where the operator mksum is used to create a new common domain type δ. The associated
operators sumleft and sumright translate back from δ to the original types α and β:

mksum(Rα[p]−β ,Rα[p]−γ) : Rα−δ

sumleft(Rα[p]−β ,Rα[p]−γ) : Rδ[q] 7→β

sumright(Rα[p]−β ,Rα[p]−γ) : Rδ[q]→γ

mksum(r1, r2) ∗ sumleft(r1, r2) = r1

mksum(r1, r2) ∗ sumright(r1, r2) = r2

86 The operator mkprod and friends. In a way, mkprod is the dual operation of mksum.
Where mksum introduces a new index space to implement sum types and unions, mkprod helps
implement product types. Suppose we have a comprehension Bag[(dn d , pn p) | p ← persons , d ←
dogs of p]. Skipping over the details of the translation, it seems reasonable that at the heart of
dogs of there is a relation owns : RPerson−Dog . Evaluating the query means restricting owns to
the persons mentioned in persons , and then producing a person name and dog name for each pair
in the restricted relation owns ′. Therefore, the elements of the result bag are identified by pairs:

{|(alice, fido)10,1, (bob, spot)20,7, (bob, rex)20,8|}†.

We have omitted the Person keys for simplicity when we used this example earlier in chapter 1.
That was possible because owns and owns ′ are one-to-many relationships, so the dog key implies
the person key. However, in the general case where the relation is many-to-many, both keys are
necessary to identify a pair.

The operator mkprod is used to introduce an index space γ of (Person,Dog)-pairs. As with
mksum, there are two helper operators that translate back to the original index spaces:

mkprod(Rα−β) : Rα−γ ,

prodleft(Rα−β) : Rγ→α,

prodright(Rα−β) : Rγ→β .

prodleft(r) ∗ converse(prodright(r)) = r .

In paragraph 79 we have already seen how mkprod can be used to implement the distribution
function DBag:

DBag ◦ pair 〈F , bag〈d , r ,G〉〉 = bag〈d ,mkprod(r), pair 〈prodleft(r) ∗ F , prodright(r) ∗G〉〉.

87 Example implementation of mkprod and mksum. Given

r1
1 a
2 b
2 c

r2
4 P
5 Q
6 Q
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the functions mksum, sumleft and sumright can be implemented as follows:

mksum(r1, r2)
1 10
2 11
2 12
4 23
5 24
6 25

sumleft(r1, r2)
10 a
11 b
12 c

sumright(r1, r2)
23 P
24 Q
25 Q

Similarly, with r as given below, mkprod , prodleft and prodright can be implemented as

r
1 10
1 20
2 30
3 40
4 40

mkprod(r)
1 100
1 101
2 102
3 103
4 104

prodleft(r)
100 1
101 1
102 2
103 3
104 4

mkprod(r)
100 10
101 20
102 30
103 40
104 40

88 Order-preserving versions. We assume our primitive types, or at least the ones used
as index types, to be ordered. The ordering of the element-keys is used in the List frame to
represent the order of the elements in the list. Because in practice most index types are variants
of integers, this is not a problem. However, it necessitates the introduction of special, order-
preserving versions of mkprod , mksum and friends, called mkprod ord , prodleft ord , prodright ord ,
mksum ord , sumleft ord and sumright ord . By order-preserving we mean that for mkprod(r) the
ordering on the new keys of type γ mirrors the lexical ordering on the corresponding (α, β)-pairs
in r :

x < y ⇐⇒ (prodleft ord(r)(x ), prodright ord(r)(x )) < (prodleft ord(r)(y), prodright ord(r)(y)).

Similarly, for mksum(r1, r2) the ordering of the new δ-keys mirrors that of the β- and the
γ-keys whenever appropriate:

∀(d , b), (d ′, b′) ∈ sumleft(r1, r2) • d < d ′ ⇐⇒ b < b′

∀(d , c), (d ′, c′) ∈ sumright(r1, r2) • d < d ′ ⇐⇒ c < c′

When implementing list concatenation it is convenient if all elements originally from r1 sort before
those originally from r2:

∀(d1, b) ∈ sumleft(r1, r2) ∀(d2, c) ∈ sumright(r1, r2) • d1 < d2.

Note that every implementation of mkprod ord also suffices as an implementation of mkprod ,
but not the other way around. This illustrates how bags give the implementation more freedom
than lists. Optimization such as the ones in paragraph 56 enable Dodo to transform list queries
that do not really use “list-ness” into bag queries.

89 Example for mksum ord. Consider

r1
1 a
3 b
5 c

r2
2 q
4 p

with a < b < c and p < q. Then the order preserving mksum can be implemented as

mksum ord(r1, r2)
1 10
2 21
3 11
4 20
5 12

sumleft ord(r1, r2)
10 a
11 b
12 c

sumright ord(r1, r2)
20 p
21 q
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4.2 Core frames and rewrite rules

In this section we give frames and rewrite rules for the identity function and functor, for primitive
types, sum- and product types. For each frame, we give the type rule and the implementation
of c ∗ , ++ and the dom operator as required in section 3.2. We also give pseudo code for an
interpretation function lookup that creates a string representation of the requested value.

90 The Id functor and id function. The Id functor does not have its own frame type. The
rewrite rules

Id h ◦ F = h ◦ F

DId ◦ pair 〈F ,G〉 = pair 〈F ,G〉

are sufficient to translate any expression to frame form. The identity function has a very simple
rewrite rule:

id ◦ F = F .

91 The none frame. The none〈〉 frame is used to denote a function with an empty domain.
As explained in paragraph 72, it is used as a placeholder in other frames. Its type rule is

none〈Rα7↔7=〉 : α→ A

for arbitrary A. The none frame has one component, an empty domain column. Having a column
to copy the type from simplifies the implementation of the domain operator, because emptycol
requires an “example column” as an argument. There is no sensible interpretation function. It is
an error to attempt to retrieve a value from a none〈〉 frame.

dom none〈d〉 = d

r ∗ none〈d〉 = none〈emptycol(twin(r))〉

none〈d〉++ F = F

F ++ none〈d〉 = F

lookup(none〈d〉, x ) = ERROR!

92 The atom frame. The frame atom〈f 〉 is used to denote values of a primitive type. Type
rule:

atom〈Rα7→β〉 : α→ β

Frame rules:

dom atom〈f 〉 = twin(f )

r ∗ atom〈f 〉 = atom〈r ∗ f 〉

atom〈f 1〉++ atom〈f 2〉 = atom〈f 1 ++ f 2〉

lookup(atom〈f 〉, x ) = f (x )

93 The pair frame. The pair 〈〉 frame denotes pairs. Type rule:

pair 〈α→ A, α→ B〉 : α→ (A× B)

Frame rules:

dom pair 〈F ,G〉 = domF = domG

r ∗ pair 〈F ,G〉 = pair 〈r ∗ F , r ∗G〉

pair 〈F1,G1〉++ pair 〈F2,G2〉 = pair 〈F1 ++ F2,G1 ++ G2〉

lookup(pair 〈F ,G〉, x ) = ′(′ lookup(F , x ) ′,′ lookup(G, x ) ′)′
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Additional pair operations from paragraph 74: this section:

exl ◦ pair 〈F ,G〉 = F

exr ◦ pair 〈F ,G〉 = G

onl h ◦ pair 〈F ,G〉 = pair 〈h ◦ F ,G〉

onr h ◦ pair 〈F ,G〉 = pair 〈F , h ◦G〉

Donl ◦ pair 〈H , pair 〈F ,G〉〉 = pair 〈pair 〈H ,F 〉,G〉

Donr ◦ pair 〈H , pair 〈F ,G〉〉 = pair 〈F , pair 〈H ,G〉〉

94 The either frame. The either 〈F ,G〉 frame denotes a sum type. The idea is that the key
exists either in F or in G. Type rule:

either 〈α(0) → A, α(1) → B〉 : α→ (A + B).

Sum frame rules:

dom either 〈F ,G〉 = domF ++ domG

r ∗ either 〈F ,G〉 = either 〈r ∗ F , r ∗G〉

either〈F1,G1〉++ either 〈F2,G2〉 = either 〈F1 ++ F2,G1 ++ G2〉

lookup(either 〈F ,G〉, x ) = lookup(F , x ) if x in domF ,

lookup(either 〈F ,G〉, x ) = lookup(G, x ) if x in domG .

Additional sum type operations from paragraph 74

inl ◦ F = either 〈F ,none〈emptycol(dom F )〉〉

inr ◦ F = either 〈none〈emptycol(dom F )〉,F 〉

ifl h ◦ either 〈F ,G〉 = either 〈h ◦ F ,G〉

ifr h ◦ either 〈F ,G〉 = either 〈F , h ◦G〉

Difl ◦ pair 〈H , either 〈F ,G〉〉 = either 〈pair 〈H ,F 〉,G〉

Difr ◦ pair 〈H , either 〈F ,G〉〉 = either 〈F , pair 〈H ,G〉〉

4.3 Lists, bags, etc.

In this section we give implementations for the other types and functions mentioned in the intro-
duction of this chapter.

95 The bag frame. The bag〈d , r ,F 〉 frame is used to denote bags. Type rule:

bag〈Rα7↔7=,Rα−β , β → A〉 : α→ BagA

The column r gives the relation between the outer keys, which identify bags, and the inner keys,
which identify elements in the bag. If a bag identified by a :: α happens to be empty, it contains
no elements, and therefore a does not occur in r . To ensure that we are able to recover the domain
of the frame, column d keeps track of the keys of all bags in the frame.

dom bag〈d , r ,F 〉 = d

r ′ ∗ bag〈d , r ,F 〉 = bag〈twin(r ′ ∗ d), r ′ ∗ r ,F 〉

bag〈d1, r1,F1〉++ bag〈d2, r2,F2〉 = bag〈d1 ++ d2,mksum(r1, r2), sumleft(r1, r2) ∗ F1 ++ sumright(r1, r2) ∗ F2〉

lookup(bag〈d , r ,F 〉, x ) = ′{|′ (for y in r(x ) : lookup(F , y) ′,′ ) ′|}′
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The frame union operator uses mksum to coerce F1 and F2 to the same type in order to combine
the elements into a single frame. The lookup function is written informally. It means: look up the
relational image of x in r . Look up in F each y of the relational image. Intersperse the results
with commas and put everything betweeen bag-brackets.

Our name for the initial algebra for bags is bag. For the Bag monad we define

zeroBag ◦ F = bag〈domF , emptycol(dom F ),none〈emptycol(dom F )〉〉

unitBag ◦ F = bag〈domF , domF ,F 〉

unnestBag ◦ bag〈d1, r1, bag〈d2, r2,F 〉〉 = bag〈d1, r1 ∗ r2,F 〉

Bag f ◦ bag〈d , r ,F 〉 = bag〈d , r , f ◦ F 〉

DBag ◦ pair 〈F , bag〈d , r ,G〉〉 = bag〈d ,mkprod(r), pair 〈prodleft(r) ∗ F , prodright(r) ∗G〉〉

Comprehension type Bag : (bag, Bag, (zeroBag, unitBag, unnestBag))

The unit rule takes the frame F and uses it three times in the result. Because unitBag ◦ F has
the same domain as F , the result frame gets domF as its first component. It gets domF as the
outer-inner relation because every bag it constructs (outer) contains precisely one element (inner).
We use here that domF is a binary identity relation. Finally, it uses F itself as the mapping from
element keys to elements.

The zero rule is very much alike, except that it creates an empty inner-outer relation to signify
that all bags in the frame are empty. This version of the rule puts a none frame in the third
component, but it would be equally valid to just put F there. The only important thing is that F
has a type that satisfies the type rule for bag frames.

96 The list frame. The list frame has the same structure as the bag frame, but it needs to
maintain the ordering of the elements within it. We choose to do so using the native ordering of
the element keys, so in the frame list〈d , r ,F 〉 with r : Rα−β , the ordering of the β keys determines
the order of the elements in the list.

Most rewrite rules can simply be copied from the bag frame, but frame union needs to use
the order-preservering variants of mksum and friends. Moreover, where unnestBag translates to
a simple column semijoin, unnestList needs to use the order preserving mkprod ord operator to
ensure proper ordering of the flattened list. Consider

unnestList ◦ list〈d1, r1, list〈d2, r2,F 〉〉.

Assume the types r1 : Rα−β and r2 : Rβ−γ . The order of the elements in the unnested list is
determined by both the β and the γ keys in r2. The α-keys are irrelevant because they identify
result lists, not elements. In the rewrite rule

unnestList ◦ list〈d1, r1, list〈d2, r2,F 〉〉 = list〈d1, r1 ∗mkprod ord(r2), prodright ord(r2) ∗ F 〉,

the expression mkprod ord(r2) gives a relation between the β-keys and new identifiers for the
(β, γ)-pairs in r2, so r1 ∗ mkprod ord(r2) gives a relation between the outer α-keys and the new
element keys. Because we use the ∗ ord variants, the new element keys preserve the original
ordering. In the third component, we translate the elements in F to the new properly ordered
key space.

For completeness the adjusted rules for list . Type rule:

list〈Rα7↔7=,Rα−β , β → A〉 : α→ ListA

Frame operations:

dom list〈d , r ,F 〉 = d

r ′ ∗ list〈d , r ,F 〉 = list〈twin(r ′ ∗ d), r ′ ∗ r ,F 〉
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list〈d1, r1,F1〉++ list〈d2, r2,F2〉 = list〈d1 ++ d2,mksum ord(r1, r2),

sumleft ord [(r1, r2) ∗ F1 ++ sumright ord(r1, r2) ∗ F2〉

lookup(list〈d , r ,F 〉, x ) = ′[′ (for y in r(x ) : lookup(F , y) ′,′ ) ′]′

Our name for the initial algebra for bags is list . For the List monad we define

zeroList ◦ F = list〈domF , emptycol(dom F ),none〈emptycol(dom F )〉〉

unitList ◦ F = list〈domF , domF ,F 〉

unnestList ◦ list〈d1, r1, list〈d2, r2,F 〉〉 = list〈d1, r1 ∗ r2,F 〉

List f ◦ list〈d , r ,F 〉 = list〈d , r , f ◦ F 〉

DList ◦ pair 〈F , list〈d , r ,G〉〉 = list〈d ,mkprod ord(r), pair 〈prodleft ord(r) ∗ F , prodright ord(r) ∗G〉〉

Comprehension type List : (list , List, (zeroList, unitList, unnestList))

97 Constant functions. The constant function constructor const from paragraph 70 is used
for two purposes. The first is to introduce literals into the point-free form, i.e., the simple query 3

has point-free form const 3. The other use is to introduce literals from the Dodo schema. For
instance, the point-free expression Q ′ in paragraph 15 contain the subexpression const nesteddogs .
In paragraph 14, nesteddogs is defined as

nesteddogs : Bag Bag Dog := (bag〈d1, r1, bag〈d2, r2, atom〈d3〉〉〉) † .

If the schema defines d = F † where F is a frame of type 1 → A, and if G : α → B , then the
expression const d ◦G can be translated as follows:

const d ◦G = settail(dom G, †) ∗ F .

What happens here is that settail(dom G, †) creates a column that maps every key in α (the
domain of G) to †. This column is then used to transform F from domain 1 to domain α. In the
case of literals, there is a more direct way:

const 3 ◦G = atom〈settail(dom G, 3)〉.

98 The list-to-bag function lb. Switching from lists to frames is just a matter of changing
the frame name.

lb : ListA→ BagA

lb : list →INS bag

lb ◦ list〈d , r ,F 〉 = bag〈d , r ,F 〉.

The first entry gives the type of lb. The second its place in the homomorphism graph. The third
its rewrite rule.

99 The sum function. The sum function has type BagZ→ Z. That means that its rewrite
rule is of the form

sum ◦ bag〈d , r , atom〈f 〉〉 = atom〈XX 〉.

Assuming types d : Rα7↔7=, r : Rα−β and f : Rβ 7→Z, the mystery column XX must have type α→ Z

and map each a ∈ α to the sum of the numbers in the relational image (r ∗ f )(a). We take XX =
opsum (d , r ∗ f ) where opsum is the column operator of type opsum (Rα7↔7=,Rα7−Z) : Rα7→Z that
sums the tails of its second argument while grouping the heads by its first argument. Due to
the possibility that (r ∗ f )(a) = emptyset , the translation not only depends on r ∗ f but also
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on d . Because of this, implementing opsum in SQL involves outer joins and special handling of
the resulting NULL-values.

A general pattern in Dodo is that aggregate functions in the nested-structure language are
translated to grouping aggregates in the underlying database system. If the head-type is 1, the
grouping could be omitted, but it is uncertain whether this is a worthwhile optimization.

The function sum is a homomorphism from bag to the special algebra 0O(+). In the prototype,
the latter is called sum. The comprehension type below allows us to write things such as Sum[x 2 |
x ← some bag or list ].

sum : ListZ→ Z

sum : bag →INS sum

sum ◦ bag〈d , r , atom〈f 〉〉 = atom〈opsum (d , r ∗ f )〉

Comprehension type Sum : (sum, Id, (zerosum , unitsum , unnestsum))

zerosum = const 0

unitsum = id

unnestsum = id

100 The functions any and all . The functions any and all are entirely similar to sum,
except that they calculate the logical (∨) with unit element false and the logical (∧) with unit
element true, respectively. Their rewrite rules assume suitable grouping aggregate operations to
exist at the column level.

Because of the way they are typically used in comprehensions, the corresponding comprehension
types are named Exists and Forall rather than Any and All .

any : BagB→ B

any : bag →INS any

any ◦ bag〈d , r , atom〈f 〉〉 = atom〈opany (d , r ∗ f )〉

Comprehension type Exists : (any, Id, (zeroany , unitany , unnestany))

zeroany = const false

unitany = id

unnestany = id

all : BagB→ B

all : bag →INS all

all ◦ bag〈d , r , atom〈f 〉〉 = atom〈opall (d , r ∗ f )〉

Comprehension type Forall : (all , Id, (zeroall , unitall , unnestall))

zeroall = const true

unitall = id

unnestall = id

Note that if the prototype would have a Set type, the all and any functions would be homomor-
phisms from set instead of bag.

101 The to str function. The function to str maps integers to their decimal string represen-
tation. It is not a homomorphism between any algebras Dodo is aware of.

to str : Z→ S

to str ◦ atom〈f 〉 = atom〈opto str (f )〉
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102 Boolean operations. Booleans can very well be implemented as sum types 1 + 1, but in
the prototype we will simply implement them using an underlying boolean type, which can either
be a proper two-valued boolean type or something in the C style of integers where zero represents
false and the other values represent true. We abstract from this choice by introducing selecttrue
and selectfalse column operators.

not : B→ B

and : B× B→ B

or : B× B→ B

bool2sum : B→ 1 + 1

not ◦ atom〈b〉 = atom〈opnot (b)〉

and ◦ pair 〈atom〈b〉, atom〈b′〉〉 = atom〈opand (b, b′)〉

or ◦ pair 〈atom〈b〉, atom〈b′〉〉 = atom〈opor (b, b′)〉

bool2sum ◦ atom〈b〉 = either 〈selecttrue(b), selectfalse(b)〉

103 Equality eq for primitive types. Comparing primitive values is left to a suitable
column operator. Its implementation depends on the arguments type and on the way booleans
are implemented.

eq ◦ pair 〈atom〈f 〉, atom〈g〉〉 = atom〈opeq(f , g)〉.

104 Equality for product types. Pairs are equal if their left components are equal and
their right components are equal. This translates into the following rewrite rule:

eq ◦ pair 〈pair 〈F1,G1〉, pair 〈F2,G2〉〉 = and ◦ pair 〈eq ◦ pair 〈F1,F2〉, eq ◦ pair 〈G1,G2〉〉.

105 Equality for sum types. Equality for sum types is easy to understand but more complex
to implement than for product types. Two sum values are not equal if their left-, right-handedness
differs, or if they are equally handed but their encapsulated value differ. The rewrite rule separates
the four cases left/left, left/right, right/left and right/right.

eq ◦ pair 〈either 〈F1,G1〉, either 〈F2,G2〉〉 = LL ++ LR ++ RL ++ RR

where

LL = eq ◦ pair 〈intersect(domF1, domG1) ∗ F1, intersect(domF1, domG1) ∗G1〉

LR = atom〈settail(intersect(domF1,G2), false)〉

RL = atom〈settail(intersect(domF2,G1), false)〉

RR = eq ◦ pair 〈intersect(domF2, domG2) ∗ F2, intersect(domF2, domG2) ∗G2〉

Explicitly calculating all these intersections is necessary because we work in a function based rep-
resentation, so eq expects its arguments to have exactly the same domain. It is interesting to
explore the possibility of a higher-order function eq ′ that calculates equality only on the intersec-
tion of its arguments’ domains, together with a separate operator that helps insert the default
value false where the domains to not overlap. The eq ′ operator for primitive types maps very
nicely to operations supported by most platforms:

select x.h, x.v = y.v

from x, y

where x.h = y.h

Optimizing equality on sum types is worthwhile because in, e.g., XML applications, deeply nested
sum types will be very common.

106 Equality for lists and bags. Equality testing for lists and bags is doable but will not
be very efficient. In the prototype we omit implementations for the eq operator on lists and bags.
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4.4 Rewriting example

In paragraph 15 we presented a sample query and also its translation to point-free form. Later,
in section 3.3 we have seen how the translation to point-free form came about. In this section we
show how the expression was subsequently rewritten to the frame form displayed in paragraph 17.
To keep the example readable, some steps use laws on column operators that in the present report
are only hinted at as possible optimizations.

Bag(onl dn ◦ onr da ◦∆) ◦ unnestBag ◦ const nesteddogs ◦ atom〈idunit〉

= { definition nesteddogs in paragraph 14, rule for const }

Bag(onl dn ◦ onr da ◦∆) ◦ unnestBag ◦ ((dom atom〈idunit〉) ∗ bag〈d1, r1, bag〈d2, r2, atom〈d3〉〉〉)

= { dom atom in parg 92, twin(idunit) = idunit }

Bag(onl dn ◦ onr da ◦∆) ◦ unnestBag ◦ (idunit ∗ bag〈d1, r1, bag〈d2, r2, atom〈d3〉〉〉)

= { ∗ for bags, join with complete bin. id. rel changes nothing }

Bag(onl dn ◦ onr da ◦∆) ◦ unnestBag ◦ bag〈d1, r1, bag〈d2, r2, atom〈d3〉〉〉

= { definition unnestBag in paragraph 95 }

Bag(onl dn ◦ onr da ◦∆) ◦ bag〈d1, r1 ∗ r2, atom〈d3〉〉

= { definition Bag functor }

bag〈d1, r1 ∗ r2, onl dn ◦ onr da ◦∆ ◦ atom〈d3〉〉

= { definition ∆ in paragraph 93 }

bag〈d1, r1 ∗ r2, onl dn ◦ onr da ◦ pair 〈atom〈d3〉, atom〈d3〉〉〉

= { definition onl and onr }

bag〈d1, r1 ∗ r2, pair 〈dn ∗ atom〈d3〉, da ∗ atom〈d3〉〉〉

= { schema in paragraph 14 }

bag〈d1, r1 ∗ r2, pair 〈atom〈d3 ∗ f 〉, atom〈d3 ∗ g〉〉〉

In this calculation, the identifier idunit was defined by the Dodo core system, and d1, r1, d2, r2,
r3, f and g by Dodo schema 14.
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Chapter 5

Issues

In this chapter we we state several remarks on the material in the preceding chapters. Although
the distinction is not always very clear, we separate them them in two classes: General Remarks
and Future Work.

5.1 General Remarks

107 Monads with plus and zero. We defined monads and monads with zero. In the
literature one finds also monads with plus and zero. In the case of lists, the plus operation takes
two lists and returns the concatenation. It is related to zero in that zero gives the neutral element
of plus . We have seen plus under the name concat in the definition of unnest (paragraph 52).

A monad with plus and zero comes with some useful laws about unnest, zero and plus, which
would be very useful for optimizing Dodo queries. Extending the current formalism with plus
seems very straightforward.

108 Columns may not be sets of pairs. In this report we have treated columns as sets
of pairs and suggested that columns map conveniently onto MonetDB BATs. This is not entirely
true. In the MonetDB documentation it is reluctantly admitted that BATs in fact behave as bags
(multisets) of pairs, not sets. And because of operations like sort in the BAT-algebra, it would in
fact be even more accurate to say that BATs have list semantics. A similar thing happens in SQL,
being the most prominent though not the most faithful implementation of the relational model.
The SQL select statement contains an order by clause that explicitly introduces an ordering. In
order to support this clause, the underlying algebra needs to have some notion of ordering defined
in it.

One approach is to define the underlying algebra not in terms of sets of pairs but in terms
of lists of pairs, with the proviso that the result of most of the operators is only defined up to
element reordering and duplication. In other words, let the data type underlying the algebra
be as detailed as possible (lists), but let most operators have set-semantics. In paragraph 38
(algebras with equations) we touched upon a particularly elegant way of expressing this. Note
that by “operators with set-semantics” we do not mean that after every operation, duplicates are
removed. Rather, we mean that the operators are indifferent to the order of elements within the
list and the existence of duplicates. Making this explicit allows one to reason more easily about
where duplicate elimination needs and does not need to be performed.

Note that we are not trying to throw the relational model out the window. Set semantics are
very natural for writing a database schema and the semantics of operators. It is just that at the
lower levels of query processing, and on input/output, it is beneficial to acknowledge that the
underlying data storage has more structure than just set structure.

Considering the above, and the fact that both MonetDB and SQL essentially provide bag
semantics, we believe that it would be beneficial to expose the bag structure in the column layer
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of Dodo. This would imply providing several variants of operators that preserve different amounts
of structure. A prominent example would be the join operator ∗ which could come in a variation
that preserves the precise number of duplicates, and another variant that is allowed not to preserve
this. The frame definitions know which assumptions they make about the columns in the frames,
and are therefore able to pick the proper operators. Note that from the users point of view,
set semantics are provided by a Set type former, regardless of the semantics of the underlying
columns.

We do not propose columns to have list semantics. Having list semantics only makes sense if
there are enough operations that preserve it, and in MonetDB, even though the order of elements
in a BAT is quite visible, few operations make any guarantees about it. It also seems that having
access to the order of the pairs in the column does not open up many possibilities for optimizations,
so overall, list semantics are not worth the effort.

It is important not to confuse the issue of order as in list semantics for columns with the
order that is preserved by the order preserving operations mkprod ord , prodleft ord , prodright ord ,
mksum ord , sumleft ord and sumright ord defined in paragraph 88, which preserve the relative
ordering of tail values with respect to corresponding head values.

109 Synchronized BATs. Synchronized BATs are an important issue in MonetDB. They
also emphasize that BATs are essentially list-based. Two BATs are said to be synchronized if
their head-attributes contain the same values in the same order. Knowing that two BATs are
synchronized allows huge optimizations. If, for instance, r1 and r2 are synchronized, the head-wise
equality operator

[=](r1, r2) := {(h, t1 = t2) | (h, t1) ∈ r1, (h, t2) ∈ r2}

can be implemented using a simple scan through r1 and r2, instead of having to search in r2 for
every head in r1.

MonetDB contains a mechanism to track whether columns are synchronized, automatically
picking optimized variants of operators when possible. There is also a built-in operator that forces
synchronization. It seems that for the kind of queries Dodo produces, most resulting BATs will
be synchronized already. If this turns out not to be the case, it might be an option to track
synchronization also within Dodo, perhaps in the type system.

110 Zip. Of the well known functional programming power tools, Dodo has map in the form
of type functors, it has fold in the form of catamorphisms, but it has no zip. The zip function
on lists has type ListA × ListB → List(A × B), mapping the pair of lists ([1, 2, 3], [a, b, c]) to
[(1, a), (2, b), (3, c)]. Essentially, it exchanges the List and × type formers. I have not encountered
instances of zip in the example Moa queries. This is not very surprising, as zipping tends to
be position-based and database queries tend to avoid lists in favor of bags and sets, which have
no notion of “position.” In an XML processing, lists do occur, but zipping is not an important
operation in that context.

111 Name clashes. One practical problem with our approach is name clashes. Consider the
identifier sum. It could be used as sum : BagZ → Z in the nested-structure layer, sum(Rα−Z) :
Rα→Z in the column layer, and probably also as the name of the summation operator of the
underlying database system. And then we not have counted yet its use as the name of the sum-
algebra 0 O (+) and the comprehension type Sum[. . . | . . .].

There are two approaches to this problem. The first is to use the very large name space of the
Dodo prototype: sum, opsum , etc. The other is to maintain separate namespaces for all uses. We
already did this a little by using the name sum as the algebra name. We also prefixed the column
names in paragraph 73 with an exclamation mark, and this treatment might be extended to the
column operators.

112 Column Type Notation. The column type notation is not strong enough to easily
capture all semantics of the column operations. In particular, it supports type variables α and β
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as placeholders for types, but it has no placeholders for properties. One possibility would be to
declare the propagation of each property separately. For instance, the behaviour of the semijoin
operator ∗ could be expressed as

Rα−β ∗ Rβ−γ : Rα−γ

Rα→β ∗ Rβ→γ : Rα→γ

Rα←β ∗ Rβ←γ : Rα←γ

Rα7−β ∗ Rβ 7−γ : Rα7−γ

Rα−7β ∗ Rβ−7 γ : Rα−7 γ

113 Optimizations in the frame/column language. Many rewrite rules depend on rewrite
rules at the column level to optimize away inefficiencies they introduce. We already saw in para-
graph 17 the propagation of sethead through ∗. A more detailed demonstration can be found
in 4.4, where several column-level identities are used. In the latter case, the purpose of the op-
timizations is not efficiency; they are applied simply to make the intermediate expressions fit on
one line.

The majority of these optimization rules is very simple; we expect to be able to write down
dozens of them at the moment we look at the first column expressions generated by the Dodo
prototype. Usually the rules depend on the completeness and uniqueness information incorporated
in the type system (paragraph 63). For instance, the equation

sethead(d2 ∗ r2, †) = sethead(r2, †)

from paragraph 17 holds only if d2 is tail-complete. If d2 is not tail-complete, joining r2 with d2

may filter out some tuples. If we assume bag semantics for columns as in paragraph 108, d2 must
also be tail-unique, otherwise the number of duplicates may not be correct.

114 Booleans and equality. There are two ways of implementing booleans. In the prototype
we just use the underlying boolean or integer type, taking 0 as false and everything else as true.
Logic operations are simple streaming BAT operations. This has the advantage that it is easy to
understand and fits well with the typical back-end system. Another way of implementing booleans
is analogous to the sum type. Left-handed is true and right-handed is false. The operations not
and bool2sum are trivial, and the other logical operations are implemented using intersections and
unions.

A common optimization is to “short circuit” boolean operations, that is, in evaluating p∧q the
term q is not evaluated if p yielded false. In Dodo, the expression λx • p∧q : A→ B is translated
into a frame expression, and p and q are both computed in one go for all xes in the domain. For
implementing the short circuit optimization, sum type booleans have the advantage that after
λx • p has been evaluated, the subset of A for which p is true has already been determined and
is ready to have (λx • q) applied to it.

115 Operator Overloading. In section 4, we implemented the equality operator by giving
rewrite rules for eq ◦ F for various frames F . The question is, which type do we declare for eq in
the nested structure layer? One option would be to declare a separate equality operator for every
type, i.e., eqAtom, eqPair , etc. This is not really a workable solution. Another simple solution
is to just declare eq : A× A → B and have the rewrite process crash or get stuck if eq turns out
to be applied to a type it is not implemented on. This is a real possibility because the prototype
does not implement equality for lists and bags.

In the prototype we essentially employ the second option, but with an added safeguard. Type
checking takes place in three phases. In the first phase, Dodo walks the expression tree and collects
type equations. In the second phase, it computes for each node the most general type that satisfies
these equations. In the third phase, it makes a copy of the tree where each node is assigned its
type. The trick is that in the last phase, a node is allowed to refuse its assigned type and give
an error message, such as “equality for this type.” This verification phase is also used to check
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whether catamorphisms are well-defined; if τ is the list algebra then the catamorphism (|τ |) must
not be applied to a value that during unification turned out to be a bag.

116 Eliminating cartesian products. Consider a database containing

dogs = bag〈idunit , rd , atom〈fd 〉〉 : 1→ Dog

persons = bag〈idunit , rp , 〈fp〉〉 : 1→ Person

owner = atom〈ro〉 : Dog → Person

In this database, we could ask for

Bag[(owner d , d) | d ← dogs ].

But suppose we asked for

Bag[(p, d) | p ← Persons , d ← Dogs , owner d = p].

This query first constructs the cartesian product of Person and Dog, and then filters out everything
that does not meet its criterium. It would be very nice if Dodo could implement this filter after
a cartesian product using some kind of join operator at the column level. Note that in general
this will only be feasible if the filter involves only comparisons of primitive values, as the column
algebra typically has no operator available that joins on complex values such as bags.

First consider what the query looks like in point-free form. Using the alternative FILTER
function from paragraph 78, we can rewrite the expression Bag[e | x ← xs , y ← ys , p(x , y)] as
follows. We write B = Bag, un = unnestBag and F = FILTERBag , and assume e is an expression
involving x and y.

[[

λw • B [e | x ← xs , y ← ys , p(x , y)]
]]

=
· · ·

=
B

[[

λz • e
]]

◦ un ◦ B un ◦ B B F p ◦ B DB ◦ B onr ys ◦ B ∆ ◦ xs

In this expression we see the function ys = const ys applied to every element of xs . If
xs = bag〈d1, r1,F1〉 and , ys = bag〈d2, r2,F2〉, the rewrite rules in chapter 4 will deliver something
like

settail(dom F1, †) ∗ F2,

effectively materializing the cartesian product.
The dogs-persons-owner query from above corresponds to p = eq ◦ (id × owner). Predicates

of the form p = eq ◦ (f × g) can be transformed into a join in the following way. If we encounter
the query

un ◦ B un ◦ B B F (eq ◦ (f × g)) ◦ B DB ◦ B onr ys ◦ B ∆ ◦ bag〈d1, r1,F1〉, (∗)

we can first apply f to the elements in the frame F and g to the elements in frame G. The
result will be two atom frames atom〈f̂ 〉 = f ◦ F and atom〈ĝ〉 = g ◦ G containing elements of the
primitive type K .1 We can then use the standard semijoin operator to quickly construct a column
containing precisely those pairs (a, b) ∈ A× B for which f a = g b:

req = f̂ ∗ converse(ĝ).

Using req , we can build an efficient replacement for (∗):

bag〈d ,mkprod(req), pair 〈prodleft(req ) ∗ F , prodright(req ) ∗G〉〉.

In our example, f = id and g = owner , so req = id ∗ converse(owner) = converse(owner). Given
suitable operators at the column level, this approach can be generalized to other operations than
equality.

1In fact, we should take atom〈f̂ 〉 = f ◦ rtwin(r1) ∗ F , because r1 might not use all elements from F .
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117 Equality of complex data types. Implementing eq and related functions for types
other than sum and product types is harder than it may seem at first sight. For instance, consider
two frames B1 = bag〈d , r1,F1〉 and B2 = bag〈d , r2,F2〉, both of type α→ BagA. Usually, F1 and
F2 are indexed on a different key space, i.e., F1 : β → A and F2 : γ → A. Our task is to construct
a frame F = atom〈f 〉 : α→ B with the property that for every a ∈ α, the boolean F a is true if
and only if B1 a = B2 a.

For bag frames we know of no clear solution. Of course, bags whose sizes are unequal are
easy to spot, so we concentrate on the case where the sizes match. If we have list frames instead
of bag frames, can use the order to rearrange F1 and F2 in such a way that corresponding list
elements “line up.” This allows us to calculate key-wise equality between the transformed frames
and then grouping the resulting “element-booleans” to obtain “list-booleans.” For set -frames, one
can compute for each a ∈ α all corresponding β × γ pairs and then use element-wise equality to
determine whether the two sets are proper subsets of each other. Unfortunately, this trick cannot
be applied to bag frames, because it does not account for the number of times the elements occur
in the bags. Two workarounds are: turning the bags into lists by sorting them or turning them
into sets by replacing the elements by (element, multiplicity)-pairs.

Unfortunately, these operations are complicated themselves. Sorting the elements involves
comparing them using less-than relation <, which is not that well-defined and has all the problems
equality has. The other approach requires a frame-operator that identifies groups of equal values
within a frame F , possibly by constructing a frame c = atom〈c̃〉 : α→ α′ with the property that
c x = c y ⇐⇒ F x = F y. On the bright side, both approaches succeed in turning a difficult
problem on bag frames into a difficult problem on the element-frame within the bag. Moreover,
identifying groups of equal elements within a frame is a useful operation for other purposes as
well; the most obvious purpose is implementing a distinct operator.

Whatever solution we come up with, it will surely not be very efficient. Fortunately, most
real-world queries do not often compare bags and sets directly. Typically, they compare properties
of an object enclosing the set, or properties that are derived from the set. For the moment we
conclude this subsection stating that determining equality on flattened data structures is a hard
problem, especially if one wants to express it in a way that is general enough for both SQL and
MonetDB. We expect that implementing equality operators such as the operator that identifies
equal values within a frame, the join-like operations used by the optimizations in paragraph 116
and the eq-operator will be a serious burden on the extension writer.

5.2 Future Work

118 Array types. The theory behind Dodo is geared towards the kind of data structures
that is defined recursively and is operated on by induction to that recursive structure. Array-like
types do not fit very well in that frame work. This is unfortunate as such types are commonly
used in multimedia applications, which are an important application area for Moa and therefore
also Dodo. It would be interesting to gather and review both categorical attempts to capture
array semantics as well as array-based programming languages with static typing and see whether
their approaches can beneficially be applied to Dodo. Of particular interest is RAM [11], an
array language layered on top of MonetDB. Like Dodo, RAM has comprehension syntax, and
the handling of multidimensional arrays is similar to the way Dodo handles nesting, except that
comprehensions do not flatten automatically. If a : Z[3] and b : Z[2], then [x + y | x ← a, y ← b]
is of type Z[2][3] rather than Z[6].

119 Fusion theorems. In paragraph 54 we already mentioned that it is interesting to
investigate the restrictions one needs to impose on the fusion theorems in order to guarantee that
the resulting catamorphisms have a known equivalent sequence of built-in frame transformations.

120 Multiple initial algebras. Let τ be the initial INS-algebra for the List type former
and let E = {(2.3)} the set of equations that specify that an algebra ignores order. Then τ has
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a “shadow” τ ′ that is initial in Alg(INS,E ). Informally, this corresponds to the type of lists on
whose order cannot be relied. This τ ′ was used in paragraph 57 to express the fact that sum does
not care about the order in which its summands are presented, and that rev only affects the order
of its list argument:

ρ

id

τ
rev

id

τ ′

sum

σ

On the other hand, the Bag algebra β ∈ Alg(INS,E ) is also initial. Having two initial algebras for
the same equation E is not a problem. It just means that there is a unique homomorphism from
β to τ ′ and vice versa. If we make this explicit by providing homomorphisms from τ ′ to β and
vice versa, Dodo can exploit it. The homomorphism from τ ′ is the same as from τ : the list-to-bag
function lb. The homomorphism the other way around is new. It must take a bag, and produce
a list. The order in which it puts the elements in the list does not matter, because τ ′ does not
care about it anyway. We shall name this function arborder . For most implementations of Bag

and List, such a function is easy to create and cheap to execute.
With these homomorphisms in place, Dodo can immediately evaluate queries such as

Sum[x |x ← a bag],

because the required catamorphism (|β → σ|) can be implemented as (|β → σ|) = sum ◦ arborder .
The bag extension can also quickly define bagsum = sum ◦ arborder . However, if performance can
be gained by doing so, the extension can of course also define bagsum directly in terms of frames.

What makes all this interesting is that it shows how even with the primitive homomorphism
graph, Dodo can combine information from different extensions. The order-free list algebra τ ′ is
used by both the bag extension and the extension to express information about the behaviour of
their functions. Dodo uses this to automatically provide Sum, Exists and Forall comprehensions,
and in this example also to optimize away rev when it is applied to something that is going to be
converted to a bag.
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