
Functional Programming with Bananas, Lenses,Envelopes and Barbed WireErik Meijer � Maarten Fokkinga y Ross Paterson z
AbstractWe develop a calculus for lazy functional programming based on recursion operatorsassociated with data type de�nitions. For these operators we derive various algebraiclaws that are useful in deriving and manipulating programs. We shall show that allexample functions in Bird and Wadler's \Introduction to Functional Programming" canbe expressed using these operators.1 IntroductionAmong the many styles and methodologies for the construction of computer programs theSquiggol style in our opinion deserves attention from the functional programming community.The overall goal of Squiggol is to calculate programs from their speci�cation in the way a math-ematician calculates solutions to di�erential equations, or uses arithmetic to solve numericalproblems.It is not hard to state, prove and use laws for well-known operations such as addition, multi-plication and |at the function level| composition. It is, however, quite hard to state, proveand use laws for arbitrarily recursively de�ned functions, mainly because it is di�cult to refer tothe recursion scheme in isolation. The algorithmic structure is obscured by using unstructuredrecursive de�nitions. We crack this problem by treating various recursion schemes as separatehigher order functions, giving each a notation of its own independent of the ingredients withwhich it constitutes a recursively de�ned function.�University of Nijmegen, Department of Informatics, Toernooiveld 6525 ED Nijmegen, e-mail:erik@cs.kun.nlyCWI, Amsterdam & University of TwentezImperial College, London 1

This philosophy is similar in spirit to the `structured programming' methodology for imperativeprogramming. The use of arbitrary goto's is abandoned in favour of structured control owprimitives such as conditionals and while-loops that replace �xed patterns of goto's, so that rea-soning about programs becomes feasible and sometimes even elegant. For functional programsthe question is which recursion schemes are to be chosen as a basis for a calculus of programs.We shall consider several recursion operators that are naturally associated with algebraic typede�nitions. A number of general theorems are proven about these operators and subsequentlyused to transform programs and prove their correctness.Bird and Meertens [4, 18] have identi�ed several laws for speci�c data types (most notably �nitelists) using which they calculated solutions to various programming problems. By embeddingthe calculus into a categorical framework, Bird and Meertens' work on lists can be extendedto arbitrary, inductively de�ned data types [17, 12]. Recently the group of Backhouse [1] hasextended the calculus to a relational framework, thus covering indeterminancy.Independently, Paterson [21] has developed a calculus of functional programs similar in contentsbut very dissimilar in appearance (like many Australian animals) to the work referred to above.Actually if one pricks through the syntactic di�erences the laws derived by Paterson are thesame and in some cases slightly more general than those developped by the Squiggolers.This paper gives an extension of the theory to the context of lazy functional programming, i.e.,for us a type is an!-cpo and we consider only continuous functions between types (categorically,we are working in the category CPO). Working in the category SET as done by for exampleMalcolm [17] or Hagino [14] means that �nite data types (de�ned as initial algebras) and in�nitedata types (de�ned as �nal co-algebras) constitute two di�erent worlds. In that case it is notpossible to de�ne functions by induction (catamorphisms) that are applicable to both �nite andin�nite data types, and arbitrary recursive de�nitions are not allowed. Working in CPO hasthe advantage that the carriers of initial algebras and �nal co-algebras coincide, thus there is asingle data type that comprises both �nite and in�nite elements. The price to be paid howeveris that partiality of both functions and values becomes unavoidable.2 The data type of listsWe shall illustrate the recursion patterns of interest by means of the speci�c data type of cons-lists. So, the de�nitions given here are actually speci�c instances of those given in x4. Modernfunctional languages allow the de�nition of cons-lists over some type A by putting:A� ::= Nil j Cons (AkA�)The recursive structure of this de�nition is employed when writing functions 2 A� ! B thatdestruct a list; these have been called catamorphisms (from the greek preposition ����meaning2

\downwards" as in \catastrophe"). Anamorphisms are functions 2 B ! A� (from the greekpreposition ��� meaning \upwards" as in \anabolism") that generate a list of type A� from aseed from B. Functions of type A! B whose call-tree has the shape of a cons-list are calledhylomorphisms (from the Aristotelian philosophy that form and matter are one, ��o� meaning\dust" or \matter").CatamorphismsLet b 2 B and � 2 AkB ! B, then a list-catamorphism h 2 A� ! B is a function of thefollowing form: h Nil = b (1)h (Cons (a; as)) = a� (h as)In the notation of Bird&Wadler [5] one would write h = foldr b (�). We write catamorphismsby wrapping the relevant constituents between so called banana brackets:h = (jb;�j) (2)Countless list processing functions are readily recognizable as catamorphisms, for examplelength 2 A�! Num, or filter p 2 A�! A�, with p 2 A! bool.length = (j0;�j) where a� n = 1+ nfilter p = (jNil;�j)where a� as = Cons (a; as); p a= as; :p aSeparating the recursion pattern for catamorphisms (j j) from its ingredients b and � makes itfeasible to reason about catamorphic programs in an algebraic way. For example the FusionLaw for catamorphisms over lists reads:f � (jb;�j) = (jc;
j) (f b = c ^ f (a� as) = a
 (f as)Without special notation pinpointing catas, such as (j j) or foldr, we would be forced to for-mulate the fusion law as follows.Let h; g be given byh Nil = b g Nil = ch (Cons (a; as)) = a� (h as) g (Cons (a; as)) = a
 (g as)then f � h = g if f b = c and f (a� as) = a
 (f as).A clumsy way of stating such a simple algebraic property.3

AnamorphismsGiven a predicate p 2 B! bool and a function g 2 B! AkB, a list-anamorphism h 2 B!A� is de�ned as: h b = Nil; p b (3)= Cons (a; h b 0); otherwisewhere (a; b 0) = g bAnamorphisms are not well-known in the functional programming folklore, they are calledunfold by Bird&Wadler, who spend only few words on them. We denote anamorphismsby wrapping the relevant ingredients between concave lenses:h = db(g; p)ec (4)Many important list-valued functions are anamorphisms; for example zip 2 A�kB�! (AkB)�which `zips' a pair of lists into a list of pairs.zip = db(g; p)ecp (as; bs) = (as = Nil)_ (bs = Nil)g (Cons (a; as); Cons (b; bs)) = ((a; b); (as; bs))Another anamorphism is iterate f which given a, constructs the in�nite list of iterated appli-cations of f to a. iterate f = db(g; false�)ec where g a = (a; f a)We use c� to denote the constant function �x:c.Given f 2 A! B, the map function f� 2 A�! B� applies f to every element in a given list.f�Nil = Nilf�(Cons (a; as)) = Cons (f a; f�as)Since a list appears at both sides of its type, we might suspect that map can be writtenboth as a catamorphism and as an anamorphisms. Indeed this is the case. As catamorphism:f� = (jNil;�j) where a � bs = Cons (f a; bs), and as anamorphism f� = db(g; p)ec wherep as = (as = Nil) and g (Cons (a; as)) = (f a; as).HylomorphismsA recursive function h 2 A ! C whose call-tree is isomorphic to a cons-list, i.e., a linearrecursive function, is called a hylomorphism. Let c 2 C and � 2 BkC! C and g 2 A! BkA4

and p 2 A! bool then these determine the hylomorphism hh a = c; p a (5)= b� (h a 0); otherwisewhere (b; a 0) = g aThis is exactly the same structure as an anamorphism except that Nil has been replaced by cand Cons by �. We write hylomorphisms by wrapping the relevant parts into envelopes.h = [[(c;�); (g; p)]] (6)A hylomorphism corresponds to the composition of an anamorphism that builds the call-tree asan explicit data structure and a catamorphism that reduces this data object into the requiredvalue. [[(c;�); (g; p)]] = (jc;�j) � db(g; p)ecA proof of this equality will be given in x15.An archetypical hylomorphism is the factorial function:fac = [[(1;�); (g; p)]]p n = n = 0g (1+ n) = (1+ n; n)ParamorphismsThe hylomorphism de�nition of the factorial maybe correct but is unsatisfactory from a theoreticpoint of view since it is not inductively de�ned on the data type num ::= 0 j 1+num. Thereis however no `simple' ' such that fac = (j'j). The problem with the factorial is that it \eatsits argument and keeps it too" [27], the brute force catamorphic solution would therefore havefac 0 return a pair (n; n!) to be able to compute (n + 1)!.Paramorphisms were investigated by Meertens [19] to cover this pattern of primitive recursion.For type num a paramorphism is a function h of the form:h 0 = b (7)h (1+ n) = n� (h n)For lists a paramorphism is a function h of the form:h Nil = bh (Cons (a; as)) = a� (as; h as)5

We write paramorphisms by wrapping the relevant constituents in barbed wire h = [hb;�i], thuswe may write fac = [h1;�i] where n�m = (1 + n)�m. The function tails 2 A�! A��,which gives the list of all tail segments of a given list is de�ned by the paramorphism tails =[hCons (Nil;Nil);�i] where a� (as; tls) = Cons (Cons (a; as); tls).3 Algebraic data typesIn the preceding section we have given speci�c notations for some recursion patterns in connec-tion with the particular type of cons-lists. In order to de�ne the notions of cata-, ana-, hylo-and paramorphism for arbitrary data types, we now present a generic theory of data types andfunctions on them. For this we consider a recursive data type (also called `algebraic' data typein Miranda) to be de�ned as the least �xed point of a functor1.FunctorsA bifunctor y is a binary operation taking types into types and functions into functions suchthat if f 2 A! B and g 2 C! D then f yg 2 A yC! B yD, and which preserves identitiesand composition: id y id = idf y g � h y j = (f � h) y (g � j)Bifunctors are denoted by y; z; x; : : :A monofunctor is a unary type operation F, which is also an operation on functions, F 2 (A!B) ! (AF ! BF) that preserves the identity and composition. We use F; G; : : : to denotemonofunctors. In view of the notation A� we write the application of a functor as a post�x:AF. In x5 we will show that � is a functor indeed.The data types found in all current functional languages can be de�ned by using the followingbasic functors.Product The (lazy) product DkD 0 of two types D and D 0 and its operation k on functionsare de�ned as: DkD 0 = f(d; d 0) j d 2 D;d 0 2 D 0g1We give the de�nitions of various concepts of category theory only for the special case of the categoryCPO. Also `functors' are really endo-functors, and so on.6

(fkg) (x; x 0) = (f x; g x 0)Closely related to the functor k are the projection and tupling combinators:�� (x; y) = x�� (x; y) = y(f 4 g) x = (f x; g x)Using ��; �� and 4 we can express fkg as fkg = (f � ��) 4 (g � ��). We can also de�ne 4 usingk and the doubling combinator � x = (x; x), since f 4 g = fkg � �.Sum The sum D j D 0 of D and D 0 and the operation j on functions are de�ned as:D j D 0 = (f0gkD) [(f1gkD 0) [f?g(f j g) ? = ?(f j g) (0; x) = (0; f x)(f j g) (1; x 0) = (1; g x 0)The arbitrarily chosen numbers 0 and 1 are used to `tag' the values of the two summands sothat they can be distinguished. Closely related to the functor j are the injection and selectioncombinators: �{ x = (0; x)�{ y = (1; y)(f 5 g) ? = ?(f 5 g) (0; x) = f x(f 5 g) (1; y) = g ywith which we can write f j g = (�{ � f) 5 (�{ � g). Using r which removes the tags from itsargument, r ? = ? and r (i; x) = x, we can de�ne f 5 g = r � f j g.Arrow The operation! that forms the function space D! D 0 of continuous functions fromD to D 0, has as action on functions the `wrapping' function:(f! g) h = g � h � fOften we will use the alternative notation (g f) h = g � h � f, where we have swapped thearrow already so that upon application the arguments need not be moved, thus localizing thechanges occurring during calculations. The functional (f F g) h = f � hF � g wraps its F-edargument between f and g. 7

Closely related to the ! are the combinators:curry f x y = f (x; y)uncurry f (x; y) = f x yeval (f; x) = f xNote that! is contra-variant in its �rst argument, i.e. (f! g) � (h! j) = (h � f)! (g � j).Identity, Constants The identity functor I is de�ned on types as DI = D and on functionsas fI = f. Any type D induces a functor with the same name D, whose operation on objectsis given by CD = D, and on functions fD = id.Lifting For mono-functors F; G and bi-functor y we de�ne the mono-functors FG and FyG byx(FG) = (xF)Gx(FyG) = (xF) y (xG)for both types and functions x.In view of the �rst equation we need not write parenthesis in xFG. Notice that in (FyG) thebi-functor y is `lifted' to act on functors rather than on objects; (FyG) is itself a mono-functor.Sectioning Analogous to the sectioning of binary operators, (a�) b = a� b and (�b) a =a� b we de�ne sectioning of bi-functors y;(Ay) = AyI(fy) = f y idhence B(Ay) = A yB and f(Ay) = id y f. Similarly we can de�ne sectioning of y in its secondargument, i.e. (yB) and (yf).It is not too di�cult to verify the following two properties of sectioned functors:(fy) � g(Ay) = g(By) � (fy) for all f 2 A! B (8)(fy) � (gy) = ((f � g)y) (9)Taking f y g = g! f, thus (fy) = (f�) gives some nice laws for function composition.
8

Laws for the basic combinatorsThere are various equations involving the above combinators, we state nothing but a few ofthese. In parsing an expression function composition has least binding power while k bindsstronger than j.�� � fkg = f � �� f j g � �{ = �{ � f�� � f 4 g = f f 5 g � �{ = f�� � fkg = g � �� f j g � �{ = �{ � g�� � f 4 g = g f 5 g � �{ = g(�� � h) 4 (�� � h) = h (h � �{) 5 (h � �{) = h(h strict�� 4 �� = id �{ 5 �{ = idfkg � h 4 j = (f � h) 4 (g � j) f 5 g � h j j = (f � h) 5 (g � j)f 4 g � h = (f � h) 4 (g � h) f � g 5 h = (f � g) 5 (f � h)(f strictfkg = hkj � f = h^ g = j f j g = h j j � f = h^ g = jf 4 g = h 4 j � f = h^ g = j f 5 g = h 5 j � f = h^ g = jA nice law relating 4 and 5 is the abides law:(f 4 g) 5 (h 4 j) = (f 5 h) 4 (g 5 j) (10)VariaThe one element type is denoted 1 and can be used to model constants of type A by nullaryfunctions of type 1! A. The only member of 1 called void is denoted by ().In some examples we use for a given predicate p 2 A! bool, the function:p? 2 A! A j Ap? a = ?; p a = ?= �{ a; p a = true= �{ a; p a = falsethus f 5 g � p? models the familiar conditional if p then f else g �. The function VOIDmaps its argument to void: VOID x = (). Some laws that hold for these functions are:VOID � f = VOIDp? � x = x j x � (p � x)?In order to make recursion explicit, we use the operator � 2 (A! A)! A de�ned as:� f = x where x = f x9

We assume that recursion (like x = f x) is well de�ned in the meta-language.Let F; G be functors and 'A 2 AF ! AG for any type A. Such a ' is called a polymorphicfunction. A natural transformation is a family of functions 'A (omitting subscripts wheneverpossible) such that: 8f : f 2 A! B : 'B � fF = fG � 'A (11)As a convenient shorthand for (11) we use ' 2 F �! G to denote that ' is a natural trans-formation. The \Theorems For Free!" theorem of Wadler, deBruin and Reynolds [28, 9, 22]states that any function de�nable in the polymorphic �-calculus is a natural transformation. If' is de�ned using �, one can only conclude that (11) holds for strict f.Recursive typesAfter all this stu� on functors we have �nally armed ourselves su�ciently to abstract from thepeculiarities of cons-lists, and formalize recursively de�ned data types in general.Let F be a monofunctor whose operation of functions is continuous, i.e., all monofunctorsde�ned using the above basic functors or any of the map-functors introduced in x5. Thenthere exists a type L and two strict functions inF 2 LF ! L and outF 2 L ! LF (omittingsubscripts whenever possible) which are each others inverse and even id = �(in F out)[6, 23, 16, 24, 30, 12]. We let �F denote the pair (L; in) and say that it is \the least �xedpoint of F". Since in and out are each others inverses we have that LF is isomorphic to L, andindeed L is | upto isomorphism | a �xed point of F.For example taking XL = 1 j AkX, we have that (A�; in) = �L de�nes the data type of cons-lists over A for any type A. If we put Nil = in � �{ 2 1! A� and Cons = in � �{ 2 AkA�!A�, we get the more familiar (A�; Nil 5 Cons) = �L. Another example of data types, binarytrees with leaves of type A results from taking the least �xed point of XT = 1 j A j XkX.Backward lists with elements of type A, or snoc lists as they are sometimes called, are theleast �xed point of XL = 1 j XkA. Natural numbers are speci�ed as the least �xed point ofXN = 1 j X.4 Recursion SchemesNow that we have given a generic way of de�ning recursive data types, we can de�ne cata-,ana-, hylo- and paramorphisms over arbitrary data types. Let (L; in) = �F, ' 2 AF! A; 210

A! AF; � 2 (AkL)F! A then we de�ne(j'j)F = �(' F out) (12)db()ecF = �(in F) (13)[[';]]F = �(' F) (14)[h�i]F = �(�f: � � (id 4 f)F � out) (15)When no confusion can arise we omit the F subscripts.De�nition (13) agrees with the de�nition given in x2; where we wrote (je;�j) we now write(je� 5 (�)j).De�nition (14) agrees with the informal one given earlier on; the notation db(g; p)ec of x2 nowbecomes db((VOID j g) � p?)ec.De�nition (15) agrees with the earlier one in the sense that taking ' = c� 5 � and =(VOID j g) � p? makes [[(c�;�); (g; p)]] equal to [[';]].De�nition (15) agrees with the description of paramorphisms as given in x2 in the sense that[hb;�i] equals [hb� 5 (�)i] here.Program Calculation LawsRather than letting the programmer use explicit recursion, we encourage the use of the above�xed recursion patterns by providing a shopping list of laws that hold for these patterns. Foreach
-morphism, with
 2 fcata, ana, parag, we give an evaluation rule, which shows howsuch a morphism can be evaluated, a Uniqueness Property, a canned induction proof for a givenfunction to be a
-morphism, and a fusion law, which shows when the composition of somefunction with an
-morphism is again an
-morphism. All these laws can be proved by mereequational reasoning using the following properties of general recursive functions. The �rst oneis a `free theorem' for the �xed point operator � 2 (A! A)! Af (�g) = �h (f strict ^ f � g = h � f (16)Theorem (16) appears under di�erent names in many places2 [20, 8, 2, 15, 7, 25, 13, 31]. Inthis paper it will be called �xed point fusion.The strictness condition in (16) can sometimes be relaxed by usingf (�g) = f 0 (�g 0) (f ? = f 0 ? ^ f � g = h � f ^ f 0 � g 0 = h � f 0 (17)2Other references are welcome. 11

Fixed point induction over the predicate P(g; g 0) � f g = f 0 g 0 will prove (17).For hylomorphisms we prove that they can be split into an ana- and a catamorphism and showhow computation may be shifted within a hylomorphism. A number of derived laws showthe relation between certain cata- and anamorphisms. These laws are not valid in SET. Thehylomorphism laws follow from the following theorem:�(f F g) � �(h F j) = �(f F j) (g � h = id (18)CatamorphismsEvaluation rule The evaluation rule for catamorphisms follows from the �xed point propertyx = �f) x = f x: (j'j) � in = ' � (j'j)L (CataEval)It states how to evaluate an application of (j'j) to an arbitrary element of L (returned by theconstructor in); namely, apply (j'j) recursively to the argument of in and then ' to the result.For cons lists (A�; Nil 5 Cons) = �L where XL = 1 j AkX and fL = id j idkf withcatamorphism (jc 5 �j) the evaluation rule reads:(jc 5 �j) � Nil = c (19)(jc 5 �j) � Cons = � � idk(jc 5 �j) (20)i.e. the variable free formulation of (1). Notice that the constructors, here Nil 5 Cons areused for parameter pattern matching.UP for catamorphisms The Uniqueness Property can be used to prove the equality of twofunctions without using induction explicitly.f = (j'j) � f � ? = (j'j) � ? ^ f � in = ' � fL (CataUP)A typical induction proof for showing f = (j'j) takes the following steps. Check the inductionbase: f � ? = (j'j) � ?. Assuming the induction hypothesis fL = (j'j)L proceed by calculating:f � in = : : : = ' � fL= induction hypothesis' � (j'j)L= evaluation rule (CataEval)(j'j) � in 12

to conclude that f = (j'j). The schematic set-up of such a proof is done once and for all, andbuilt into law (CataUP). We are thus saved from the standard ritual steps; the last two lines inthe above calculation, plus the declaration that `by induction' the proof is complete.The) part of the proof for (CataUP) follows directly from the evaluation rule for cata-morphisms. For the (part we use the �xed point fusion theorem (17) with f := (f�),g := g 0 := in L out and f 0 := (j'j). This gives us f � �(in L out) = (j'j) � �(in L out)and since �(in L out) = id we are done.Fusion law for catamorphisms The Fusion Law for catamorphisms can be used to trans-form the composition of a function with a catamorphism into a single catamorphism, so thatintermediate values can be avoided. Sometimes the law is used the other way around, i.e. tosplit a function, in order to allow for subsequent optimizations.f � (j'j) = (j j) (f � ? = (j j) � ? ^ f � ' = � fL (CataFusion)The fusion law can be proved using �xed point fusion theorem (17) with f := (f�), g := ' L out, g 0 := in L out and f 0 := ((j j)�).A slight variation of the fusion law is to replace the condition f � ? = (j j) � ? by f � ? = ?,i.e. f is strict. f � (j'j) = (j j) (f strict ^ f � ' = � fL (CataFusion')This law follows from (16). In actual calculations this latter law is more valuable as its appli-cability conditions are on the whole easier to check.Injective functions are catamorphisms Let f 2 A! B be a strict function with left-inverseg, then for any ' 2 AF! A we havef � (j'j) = (jf � ' � gFj) (f strict ^ g � f = id (21)Taking ' = in we immediatly get that any strict injective function can be written as acatamorphism. f = (jf � in � gFj)F (f strict ^ g � f = id (22)Using this latter result we can write out in terms of in since out = (jout � in � inLj) = (jinLj).
13

Catamorphisms preserve strictness The given laws for catamorphisms all demonstrate theimportance of strictness, or generally of the behaviour of a function with respect to ?. Thefollowing \poor man's strictness analyser" for that reason can often be put into good use.�F � ? = ? (8f :: F f � ? = ? (23)The proof of (23) is by �xed point induction over P(F) � F � ? = ?.Speci�cally for catamorphisms we have(j'j)L � ? = ? � ' � ? = ?if L is strictness preserving. The(part of the proof directly follows from (23) and the de�nitionof catamorphisms. The other way around is shown as follows?= premise(j'j) � ?= in � ? = ?(j'j) � in � ?= evaluation rule' � (j'j)L � ?= L preserves strictness' � ?ExamplesUnfold-Fold Many transformations usually accomplished by the unfold-simplify-fold tech-nique can be restated using fusion. Let (Num�; Nil 5 Cons) = �L, where XL = 1 j NumkXand fL = id j idkf be the type of lists of natural numbers. Using fusion we derive an e�cientversion of sum � squares where sum = (j0� 5 +j) and squares = (jNil 5 (Cons � SQkid)j).Since sum is strict we just start calculating aiming at the discovery of a that satis�es thecondition of (CataFusion').sum � Nil 5 (Cons � Skid)= (sum � Nil) 5 (sum � Cons � SQkid)= Nil 5 ((+) � idksum � SQkid)= Nil 5 ((+) � SQkid � idksum)= Nil 5 ((+) � SQkid) � sumL 14

and conclude that sum � squares = (jNil 5 ((+) � SQkid)j).A slightly more complicated problem is to derive a one-pass solution foraverage = DIV � sum 4 lengthUsing the tupling lemma of Fokkinga [10](j'j)L 4 (j j)L = (j(' � ��L) 4 (� ��L)j)a simple calculation shows that average = DIV � (j(0� 5 (+) � idk��) 4 (0� 5 (+1) � ��j).Accumulating Arguments An important item in the functional programmer's bag of tricksis the technique of accumulating arguments where an extra parameter is added to a function toaccumulate the result of the computation. Though stated here in terms of catamorphisms overcons-lists, the same technique is applicable to other data types and other kind of morphisms aswell. (jc� 5 �j) l = (j(c
)� 5 	j) l �� where (a	 f) b = f (a� b) (24)(a
 �� = a ^ ?
 a = ? ^ (a� b)
 c = b
 (a� c)Theorem (24) follows from the fusion law by taking Accu � (jc� 5 �j) = (j(c�)� 5 	j) withAccu a b = a
 b.Given the naive quadratic de�nition of reverse 2 A� ! A� as a catamorphism (jNil� 5 �j)where a�as = as ++ (Cons (a;Nil)), we can derive a linear time algorithm by instantiating(24) with � := ++ and � := Cons to get a function which accumulates the list being reversedas an additional argument: (jid 5 	j) where (a 	 as) bs = as (Cons (a; bs)). Here ++is the function that appends two lists, de�ned as as ++ bs = (jid� 5 �j) as bs wherea� f bs = Cons (a; f bs).In general catamorphisms of higher type L! (I! S) form an interesting class by themselvesas they correspond to attribute grammars [11].AnamorphismsEvaluation rule The evaluation rule for anamorphisms is given by:out � db()ec = db()ecL � (AnaEval)15

It says what the result of an arbitrary application of db()ec looks like: the constituents producedby applying out can equivalently be obtained by �rst applying and then applying db()ecLrecursively to the result.Anamorphisms are real old fusspots to explain. To instantiate (AnaEval) for cons list we de�ne:hd = ? 5 �� � outtl = ? 5 �� � outis nil = true� 5 false� � outAssuming that f = db(VOID j (h 4 t) � p?)ec we �nd after a little calculation that:is nil � f = phd � f = h (:ptl � f = t (:pwhich corresponds to the characterization of unfold given by Bird and Wadler [5] on page173.UP for anamorphisms The UP for anamorphisms is slightly simpler than the one for cata-morphisms, since the base case does not have to be checked.f = db(')ec � out � f = fL � ' (AnaUP)To prove it we can use �xed point fusion theorem (16) with f := (�f), g := in L out andh := in L . This gives us �(in L out) � f = �(in L) and again since �(in L out) =id we are done.Fusion law for anamorphisms The strictness requirement that was needed for catamor-phisms can be dropped in the anamorphism case. The dual condition of f � ? = ? forstrictness is ? � f = ? which is vacuously true.db(')ec � f = db()ec (' � f = fL � (AnaFusion)This law can be proved by �xed point fusion theorem (16) with f := (�f), g := in L ' andh := in L .
16

Any surjective function is an anamorphism The results (21) and (22) can be dualizedfor anamorphisms. Let f 2 B ! A a surjective function with right-inverse g, then for any 2 A! AL we have db()ec � f = db(gL � � f)ec (f � g = id (25)since � f = fL � (gL � � f). The special case where equals out yields that any surjectivefunction can be written as an anamorphism.f = db(gL � out � f)ecL (f � g = id (26)As in has right-inverse out, we can express in using out by in = db(outL � out � in)ec =db(outL)ec.ExamplesReformulated in the lense notation, the function iterate f becomes:iterate f = db(�{ � id 4 f)ecWe have db(�{ � id 4 f)ec = db(VOID j id 4 f � false�?)ec(= db(id 4 f; false�)ec in the notation ofsection 2).Another useful list-processing function is takewhile p which selects the longest initial segmentof a list all whose elements satisfy p. In conventional notation:takewhile p Nil = Niltakewhile p (Cons a as) = Nil; :p a= Cons a (takewhile p as); otherwiseThe anamorphism de�nition may look a little daunting at �rst:takewhile p = db(�{ 5 (VOID j id � (:p � ��)?) � out)ecThe function f while p contains all repeated applications of f as long as predicate p holds:f while p = takewhile p � iterate fUsing the fusion law (after a rather long calculation) we can show that f while p = db(VOID j(id 4 f) � :p?)ec.
17

HylomorphismsSplitting Hylomorphisms In order to prove that a hylomorphism can be split into an anamor-phism followed by a catamorphism [[';]] = (j'j) � db()ec (HyloSplit)we can use the total fusion theorem (18).Shifting law Hylomorphisms are nice since their decomposability into a cata- and an anamor-phism allows us to use the respective fusion laws to shift computation in or out of a hylomor-phism. The following shifting law shows how computations can be shifted within a hylomor-phism. [[' � �;]]L = [['; � �]]M (� 2 L �! M (HyloShift)The proof of this theorem is straightforward.[[' � �;]]L= de�nition hylo�(�f:' � � � fL �)= � 2 L �! M�(�f:' � fM � � �)= de�nition hylo[['; � �]]MAn admittedly humbug example of (HyloShift) shows how left linear recursive functions can betransformed into right linear recursive functions. Let fL = id j fkid and fR = id j idkf de�nethe functors which express left respectively right linear recursion, then if x � y = y � x wehave [[c 5 �; f j (h 4 t) � p?]]L= [[c 5 � � SWAP; f j (h 4 t) � p?]]L= SWAP 2 L �! R[[c 5 �; SWAP � f j (h 4 t) � p?]]R= [[c 5 �; f j (t 4 h) � p?]]Rwhere SWAP= id j (�� 4 ��). 18

Relating cata- and anamorphismsFrom the splitting and shifting law (HyloShift), (HyloSplit) and the fact that (j'j) = [['; out]]and db()ec = [[in;]] we can derive a number of interesting laws which relate cata- and anamor-phisms with each other. (jinM � 'j)L = db(' � outL)ecM (' 2 L �! M (27)Using this law we can easily show that(j' � j)L = (j'j)M � db(� outL)ecM (2 L �! M (28)= (j'j)M � (jinM � j)L (2 L �! M (29)db(' �)ecM = (jinM � 'j)L � db()ecL (' 2 L �! M (30)= db(' � outL)ecM � db()ecL (' 2 L �! M (31)This set of laws will be used in x5.From the total fusion theorem (18) we can derive:db()ecL � (j'j)L = id (� ' = id (32)Example: Reecting binary treesThe type of binary trees with leaves of type A is given by (tree A; in) = �L where XL =1 j A j XkX and fL = id j id j gkg. Reecting a binary tree can be de�ned by: reflect =(jin � SWAPj) where SWAP = id j id j (�� 4 ��). A simple calculation proves that reflect �reflect = id.reflect � reflect= SWAP � fL = fL � SWAPdb(SWAP � out)ec � (jin � SWAPj)= SWAP � out � in � SWAP= ididParamorphismsThe evaluation rule for paramorphisms is[h'i] � in = ' � (id 4 [h'i])L (ParaEval)19

The UP for paramorphisms is similar to that of catamorphisms:f = [h'i] � f � ? = [h'i] � ? ^ f � in = ' � (id 4 f)L (ParaUP)The fusion law for paramorphisms readsf � [h'i] = [h i] (f strict ^ f � ' = � (idkf)L (ParaFusion)Any function f (of the right type of course!) is a paramorphism.f = [hf � in � ��Li]The usefulness of this theorem can be read from its proof.[hf � in � ��Li]= de�nition (15)�(�g:f � in � ��L � (id 4 g)L � out)= functor calculus�(�g:f � in � out)= fExample: composing paramorphisms from ana- and catamorphismsA nice result is that any paramorphism can be written as the composition of a cata- and ananamorphism. Let (L; in) = �L be given, then de�neXM = (LkX)LhM = (idkh)L(M; IN) = �MFor natural numbers we get XM = (NumkX)L = 1 j NumkX, i.e. (Num�; in) = �M, whichis the type of lists of natural numbers.Now de�ne preds 2 L!M as follows:preds = db(�L � outL)ecMFor the naturals we get preds = db(id j � � out)ec, that is given a natural number N = n, theexpression preds N yields the list [n- 1; : : : ; 0].Using preds we start calculating: 20

(j'j)M � preds= (j'j)M � db(�L � outL)ecM= �(�f:' � fM � �L � outL)= �(�f:' � (idkf)L � (id 4 id)L � outL)= �(�f:' � (id 4 f)L � outL)= [h'i]LThus [h'i]L = (j'j)M � preds. Since (jINj)M = id we immediately get preds = [hINi]L.5 Parametrized TypesIn x2 we have de�ned for f 2 A ! B, the map function f� 2 A� ! B�. Two laws for � areid� = id and (f � g)� = f� � g�. These two laws precisely state that � is a functor. Anothercharacteristic property of map is that it leaves the `shape' of its argument unchanged. It turnsout that any parametrized data type comes equipped with such a map functor. A parametrizedtype is a type de�ned as the least �xed point of a sectioned bifunctor. Contrary to Malcolmsapproach [17] map can be de�ned both as a catamorphism and as an anamorphism.MapsLet y be a bi-functor, then we de�ne the functor � on objects A as the parametrized typeA� where (A�; in) = �(Ay), and on functions f 2 A! B as:f� = (jin � (fy)j)(Ay) (33)Since (fy) 2 (Ay) �! (By), from (27) we immediately get an alternative version of f� as ananamorphism: f� = db((fy) � out)ec(By)Functoriality of f� is calculated as follows:f� � g�= de�nition �(jin � (fy)j) � (jin � (gy)j)= (29) 21

(jin � (fy) � (gy)j)= (9)(jin � ((f � g)y)j)= de�nition �(f � g)�Maps are shape preserving. De�ne SHAPE = VOID� then SHAPE � f� = VOID � f� =SHAPE.For cons-list (A�; Nil 5 Cons) = �(Ay) with A y X = 1 j AkX and f y g = id j fkg we getf� = db(f y id � out)ec. From the UP for catas we �nd that this conforms to the usual de�nitionof map. f� � Nil = Nilf� � Cons = Cons � fkf�Other important laws for maps are factorization [26] and promotion [4].(j'j) � f� = (j' � (fy)j) (34)f� � db()ec = db((fy) �)ec (35)(j'j) � f� = g � (j�j) (g � � = ' � f y g ^ g strict (36)f� � db()ec = db(�)ec � g (� � g = f y g � (37)Now we know that � is a functor, we can recognize that in 2 Iy� �! � and out 2 � �! Iy� arenatural transformations. f� � in = in � f y f�out � f� = f y f� � outIterate promotionRecall the function iterate f = db(�{ � id 4 f)ec, the following law turns an O(n2) algorithm intoan O(n) algorithm, under the assumption that evaluating g � fn takes n steps.g� � iterate f = iterate h � g (g � f = h � g (38)Law (38) is an immediate consequence of the promotion law for anamorphisms (37).Interestingly we may also de�ne iterate as a cyclic list:iterate f x = �(�xs:Cons (x; f�xs))and use �xed point fusion to prove (38). 22

Map-Reduce factorizationA data type (A�; in) = �(Ay) with A y X = A j XF is called a free F-type over A. For a freetype we can always write strict catas (j j) as (jf 5 'j) by taking f = � �{ and ' = � �{. Forf� we get f� = (jin � f j idj)= (jtau j join � f j idj)= (jtau � f 5 joinj)where tau = in � �{ and join = in � �{.If we de�ne the reduction with ' as '= = (jid 5 'j) (39)the factorization law (34) shows that catamorphisms on a free type can be factored into a mapfollowed by a reduce.(jf 5 'j)= (jid 5 ' � f j idj)= (jid 5 'j) � f�= '= � f�The fact that tau and join are natural transformations give evaluation rules for f� and '= onfree types. f� � tau = tau � f '= � tau = idf� � join = join � f�F '= � join = ' � ('=)FEarly Squiggol was based completely on map-reduce factorization. Some of these laws fromthe good old days; reduce promotion and map promotion.'= � join= = '= � ('=)�f� � join= = join= � f��MonadsAny free type gives rise to a monad [17], in the above notation, (�; tau 2 I �! �; join= 2�� �! �) since: join= � tau = idjoin= � tau� = idjoin= � join= = join= � join=�23

Wadler [29] gives a thorough discussion on the concepts of monads and their use in functionalprogramming.6 ConclusionWe have considered various patterns of recursive de�nitions, and have presented a lot of lawsthat hold for the functions so de�ned. Although we have illustrated the laws and the recursionoperators with examples, the usefulness for practical program calculation might not be evidentto every reader. Unfortunately we have not enough space here to give more elaborate examples.There are more aspects to program calculation than just a series of combining forms (like(j j),db()ec,[h i],[[;]]) and laws about them. For calculating large programs one certainly needs highlevel algorithmic theorems. The work reported here provides the necessary tools to developsuch theorems. For the theory of lists Bird [3] has started to do so, and with success.Another aspect of program calculation is machine assistance. Our experience |including thatof our colleagues| shows that the size of formal manipulations is much greater than in mosttextbooks of mathematics; it may well be comparable in size to \computer algebra" as donein systems like MACSYMA, Maple, Mathematica etc. Fortunately, it also appears that mostmanipulations are easily automated and, moreover, that quite a few equalities depend on naturaltransformations. Thus in several cases type checking alone su�ces. Clearly machine assistanceis fruitful and does not seem to be too di�cult.Finally we observe that category theory has provided several notions and concepts that wereindispensable to get a clean and smooth theory; for example, the notions of functor and naturaltransformation. (While reading this paper, a category theorist may recognize several othernotions that we silently used). Without doubt there is much more categorical knowledge thatcan be useful for program calculation; we are just at the beginning of an exciting development.Acknowledgements Many of the results presented here have for the case SET already ap-peared in numerous notes of the STOP Algorithmics Club featuring among others RolandBackhouse, Johan Jeuring, Doaitse Swierstra, Lambert Meertens, Nico Verwer and Jaap vander Woude. Graham Hutton provided many useful remarks on draft versions of this paper.
24

References[1] Roland Backhouse, Jaap van der Woude, Ed Voermans, and Grant Malcolm. A relationaltheory of types. Technical Report ??, TUE, 1991.[2] Rudolf Berghammer. On the use of composition in transformational programming. Tech-nical Report TUM-I8512, TU M�unchen, 1985.[3] R. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of Program-ming and Calculi of Discrete Design, pages 3{42. Springer Verlag, 1987. Also TechnicalMonograph PRG-56, Oxford University, October 1986.[4] Richard Bird. Constructive functional programming. In M. Broy, editor, MarktoberdorfInternational Summer school on Constructive Methods in Computer Science, NATO Ad-vanced Science Institute Series. Springer Verlag, 1989.[5] Richard Bird and Phil Wadler. Introduction to Functional Programming. Prentice-Hall,1988.[6] R. Bos and C. Hemerik. An introduction to the category-theoretic solution of recursivedomain equations. Technical Report TRCSN 88/15, Eindhoven University of Technology,October 1988.[7] Manfred Broy. Transformation parallel ablaufender Programme. PhD thesis, TU M�unchen,M�unchen, 1980.[8] A. de Bruin and E.P. de Vink. Retractions in comparing Prolog semantics. In ComputerScience in the Netherlands 1989, pages 71{90. SION, 1989.[9] Peter de Bruin. Naturalness of polymorphism. Technical Report CS 8916, RUG, 1989.[10] Maarten Fokkinga. Tupling and mutumorphisms. The Squiggolist, 1(4), 1989.[11] Maarten Fokkinga, Johan Jeuring, Lambert Meertens, and Erik Meijer. Translating at-tribute grammars into catamorphisms. The Squiggolist, 2(1), 1991.[12] Maarten Fokkinga and Erik Meijer. Program calculation properties of continuous algebras.Technical Report 91-4, CWI, 1991.[13] C. Gunter, P. Mosses, and D. Scott. Semantic domains and denotational semantics. InMarktoberdorf International Summer school on Logic, Algebra and Computation, 1989. toappear in: Handbook of Theoretical Computer Science, North Holland.[14] Tasuya Hagino. Codatatypes in ML. Journal of Symbolic Computation, 8:629{650, 1989.25

[15] J.Arsac and Y Kodrato�. Some techniques for recursion removal. ACM Toplas, 4(2):295{322, 1982.[16] D.J. Lehmann and M.B. Smyth. Algebraic speci�cation of data types: a synthetic ap-proach. Math. Systems Theory, 14:97{139, 1981.[17] Grant Malcolm. Algebraic Types and Program Transformation. PhD thesis, University ofGroningen, The Netherlands, 1990.[18] Lambert Meertens. Algorithmics | towards programming as a mathematical activity.In Proceedings of the CWI symposium on Mathematics and Computer Science, pages289{334. North-Holland, 1986.[19] Lambert Meertens. Paramorphisms. To appear in Formal Aspects of Computing, 1990.[20] John-Jules Ch. Meyer. Programming calculi based on �xed point transformations: seman-tics and applications. PhD thesis, Vrije Universiteit, Amsterdam, 1985.[21] Ross Paterson. Reasoning about Functional Programs. PhD thesis, University of Queens-land, Brisbane, 1988.[22] John C. Reynolds. Types abstraction and parametric polymorphism. In Information Pro-cessing '83. North Holland, 1983.[23] David A. Schmidt. Denotational Semantics. Allyn and Bacon, 1986.[24] M.B. Smyth and G.D. Plotkin. The category-theoretic solution of recursive domain equa-tions. SIAM Journal on Computing, 11(4):761{785, November 1982.[25] Joseph E. Stoy. Denotational Semantics, The Scott-Strachey Approach to ProgrammingLanguage Theory. The MIT press, 1977.[26] Nico Verwer. Homomorphisms, factorisation and promotion. The Squiggolist, 1(3), 1990.Also technical report RUU-CS-90-5, Utrecht University, 1990.[27] Phil Wadler. Views: A way for pattern matching to cohabit with data abstraction. Tech-nical Report 34, Programming Methodology Group, University of G�oteborg and ChalmersUniversity of Technology, March 1987.[28] Philip Wadler. Theorems for free ! In Proc. 1989 ACM Conference on Lisp and FunctionalProgramming, pages 347{359, 1989.[29] Philip Wadler. Comprehending monads. In Proc. 1990 ACM Conference on Lisp andFunctional Programming, 1990.[30] M. Wand. Fixed point constructions in order enriched categories. Theoretical ComputerScience, 8, 1979. 26

[31] Hans Zierer. Programmierung mit funktionsobjecten: Konstruktive erzeugung semantischebereiche und anwendung auf die partielle auswertung. Technical Report TUM-I8803, TUM�unchen, 1988.

27

