
Subtyping can have a Simple Semantics

�

Herman Balsters , Maarten M. Fokkinga

y

University of Twente, Department of Computer Science

PO Box 217, NL 7500 AE Enschede

The Netherlands

Abstract

Consider a �rst order typed language, with semantics [[]] for expressions and types.

Adding subtyping means that a partial order � on types is de�ned and that the typing rules

are extended to the e�ect that expression e has type � whenever e has type � and � � � .

We show how to adapt the semantics [[]] in a simple set-theoretic way, obtaining a semantics

[f g] that satis�es, in addition to some obvious requirements, also the property: [f�g] � [f�g],

whenever � � � .

1 Introduction and results

The usefulness of a typing discipline in programming is widely known and recognized: compile-

time type checking may detect errors before they lead to calamitous results, it may facilitate

e�ciency improvements (such as the omission of run-time domain checks), and it may guarantee

nice semantic properties (such as termination, or the existence of simple set-theoretic semantics).

A typing discipline means that in a program each constituent part is assigned|in some way or

another|an attribute (called type) and that certain relationships are required to hold between

the types assigned, if the program is to be considered well-formed and acceptable for evaluation.

Typing disciplines have been extensively studied; see e.g. [Gries 1978; introduction to Part IV],

[Fokkinga 1981, 1987], [Cardelli, Wegner 1985], [Hindley, Seldin 1986] and many others.

Subtyping is a feature of a typing discipline that may control the automatic insertion of

implicit operations; it may also be used to model the inheritance relation in object-oriented

languages, [Cardelli 1984]. Roughly said, we speak of subtyping when

� a partial order exists on types, and for types �; � with � � � there exists a (\conversion")

operation cv

���

that behaves like a function mapping arguments of type � into results of

type �

� an expression e of type � is allowed to occur at a position where something of type � is

required, provided that � � � and that the operation cv

���

is applied (implicitly) to the

value of e

Reynolds [Reynolds 1985] gives an excellent overview of various possibilities of typing and sub-

typing.

Our description of typing and subtyping, mentioned above, is of a syntactical nature. It goes

without saying that the question arises quickly whether types themselves have a meaning, i.e.

�

This work was partly conducted within the PRISMA project, a joint e�ort with Philips Research Eindhoven,

partially supported by the Dutch \Stimulerings Projectteam Informaticaonderzoek Nederland (SPIN)".

y

Currently at Centre for Mathematics and Computer Science, Amsterdam.

1

whether there exists a (mathematical) semantics for types (and subtyping). Let us denote

the semantics of closed expressions e and types � by [[e]] and [[�]], respectively. It would be nice if

the semantics [[�]] of type � is merely a set such that [[e]] 2 [[�]] whenever e has type � . However,

only for simple (so-called �rst order, non-recursive) types such a simple set-theoretic semantics

seems possible. Most often one �nds types interpreted as \domains" (continuous lattices or the

like) and sometimes a set-theoretic interpretation is proved to be impossible [Reynolds 1984].

The semantics of subtyping is our prime concern in this paper.

We set out to construct, by simple set-theoretic means, a semantics for types {in the presence

of subtyping{ such that

[[�]] � [[�]] whenever � � �

This poses serious semantical problems. Consider for example the following situation:

� Assume that [[(� ! �)]] = some non-empty set of functions that have domain [[�]] and

co-domain [[�]]

� Assume that [[int]] � [[real]]

� Assume that int � real, so that, as motivated in Section 3,

(real ! �) � (int! �)

We then �nd that the desire [[(real ! �)]] � [[(int! �)]] contradicts the following two observa-

tions:

� Functions f 2 [[(real ! �)]] cannot belong to [[(int ! �)]] because the domain of f di�ers

from [[int]]

� The cardinality of [[(real ! �)]] is strictly larger than that of [[(int! �)]]

Several authors have attacked this problem, and have solved it by non-simple (Scottery, cate-

gorical) domain constructions for [[�]]; [MacQueen et al 1984], [Cardelli 1984], [Bruce, Wegner

1987].

Our solution, on the contrary, is as simple as e�ective, and can be stated in a single line.

Given a semantics [[]] for the language without subtyping, we form a new semantics [f g] when

subtyping is added, by de�ning

[f�g] =

[

���

[[�]]

For now we have, when � � � , that

[f�g] =

S

���

[[�]]

�

S

���

[[�]] (transitivity of �, � � �)

= [f�g]

Note that we have used only elementary, primary school set-theoretic constructions in the

de�nition of [f g] for types. However, this still leaves us with the problem of de�ning [f g] for

expressions in such a way that

2

� [feg] 2 [f�g] whenever expression e has type � , and

� [f g] is in a natural way related to [[]]

The �rst part is not hard to achieve. The second part poses some technical problems: we would

like to \de�ne" [f g] by certain equations { these equations, however, turn out to be ambiguous.

We can only succeed in showing that the ambiguity is not harmful by de�ning a minimal typing

(that is sound and complete with respect to the given typing), de�ning a semantics based on

this minimal typing, and then proving that the desired equations do hold for those semantics.

The method described above, viz. constructing the required semantics [f g] from a given

semantics [[]], is demonstrated by means of a simple language containing representatives for

quite a number of practical programming language constructs. One concept that we do not

take into account is (general) recursion; as a consequence the given semantics [[]] can be kept

quite simple. (If one adds recursion, the semantics [[�]], for types � , should be a complete partial

order (c.p.o.) or an even more complex structure. But even then our technique of de�ning

[f�g] =

S

���

[[�]] works, even though the resulting [f�g] is not a c.p.o. - and note that there is

also no need for it to be a c.p.o.). There are also various aspects of polymorphism, apart from

subtyping, that we do not take into account in this paper. One particular aspect of polymorphism

is type inference, according to which expressions can have many types, and that type instances

of these expressions belong to certain type schemes (e.g. a function like (�x: x) has many types,

all being instances of the type scheme �! �). Only recently there have appeared several studies

of combining subtyping with type inference (cf. [Wand 1987], [Fuh, Mishra 1988], and [Stansifer

1988]), but these studies all address only the syntactic aspects. Further investigation is required

to determine whether our technique for a semantics of subtyping also applies in this case.

The remainder of this paper is organized as follows. In the next section we motivate and

formally treat a language without subtyping. Then, in Section 3, we introduce subtyping and

give the semantics [f g] for types and express our intentions for the semantics [f g] for expressions,

(De�nition 3.13). In Section 4 we de�ne minimal typing, and de�ne [f g] for expressions and

show that it indeed satis�es our intentions.

2 A language without subtyping

Our method of adapting a semantics [[]] for a base language without subtyping to a semantics

[f g] for subtyping, seems to be largely independent of the particular choice of the base language.

It would be nice if we could abstract away completely from the base language. However, in order

to provide formal proofs, we have to make some choice or another.

In the choice of the base language we have been lead by the overview of Reynolds [Reynolds

1985]. He discusses typing in general and does so by considering a language that has

� unrestricted abstraction (i.e. functions)

� records (or tuples, both with named and unnamed components)

� discriminated unions (or variants)

� lists (homogeneous, possibly in�nite)

� some basic data types, like integral and real numbers, truth values and so on

� the conditional (if then else) construct

3

� recursion

It turns out that not only functions give rise to semantical problems when subtyping is added (as

we have shown in the introduction), but also records (as we will point out in Remark 3.8). Lists

pose no semantical problems, and neither do variants and the conditional construct. However,

these constructs do give rise to the notions of least upper bound (t) in the de�nition of minimal

typing. So, in order to o�er a su�ciently general treatment, we should take at least one of

these constructs into consideration. We choose to leave out lists, the de�nitions for lists being

the most straightforward. In order to save some space we only consider records with named

components; records with named components are more interesting in the presence of subtyping

than those with unnamed components, since - as Reynolds has pointed out - records with named

components are better �t for allowing �eld-forgetting conversions of records and record types.

We do not treat full, unrestricted recursion; it would complicate the semantics of the base

language considerably, so that the gain of a simple, set-theoretic adaptation to subtyping is of

lesser importance in this case.

In the remainder of this section we o�er a formal treatment of the syntax and semantics of

the base language.

2.1 Postulation Let B be a set (of basic types). Let bool 2 B. As further examples one

might think of basic types int and real. We let � vary over B.

2.2 Postulation Let L be a totally ordered set (of labels). We let a vary over L.

2.3 Remark We shall require, below, that a < a

0

in a record type ha : �; a

0

: �i, thus

enforcing a canonical form. In a concrete program representation, ha : �; a

0

: �i might also be

written as ha

0

: �; a : �i. Similarly for variant types.

2.4 Notational convention We abbreviate \ha

1

: �

1

; : : : ; a

m

: �

m

i" to \ha

i

: �

i

(i 2 m)i".

That is to say, \(i 2 m)" is a post�x quali�cation, meaning \for all i from 1 to m". The

predicate \i is some value between, and including, 1 and m" is not abbreviated to (i 2 m) but

to 1 � i � m. The abbreviation is also used in other contexts.

2.5 De�nition The set T (of types) is inductively de�ned as follows

1. � 2 T , whenever � 2 B

2. (� ! �) 2 T , whenever �; � 2 T

3. ha

i

: �

i

(i 2m)i 2 T , whenever a

i

2 L; �

i

2 T (i 2 m) and a

1

< a

2

< : : : < a

m

and m � 0

4. [a

i

: �

i

(i 2 m)] 2 T , whenever a

i

2 L; �

i

2 T (i 2m) and a

1

< a

2

< : : : < a

m

and m � 1

We let �; �; � vary over T .

(Clause 2 de�nes function types, � being the parameter type and � being the result type.

Clause 3 de�nes record types, the �elds being labelled by a

1

; : : : ; a

m

. Clause 4 de�nes disjoint

unions or variant types, the summands being tagged with labels a

1

; : : : ; a

m

. Even though al-

lowing m = 0 in clause 4 would not give problems in De�nitions 2.10 and 2.15, it would make

De�nition 2.19 problematic and Theorem 2.20 as well. But allowing for m = 0, however, would

invalidate Theorem 4.7.2, and Theorem 4.8 can not even be formulated anymore (because the

� mentioned in this theorem need not exist).)

2.6 Postulation For each � 2 T let C

�

be a (possibly empty) set (of constants), mutually

disjoint. We let c vary over C

�

. C

bool

= ftrue; falseg.

4

As further examples of constants one might think of zero 2 C

int

; succ 2 C

int!int

,

null 2 C

real

; add1 2 C

real!real

. To get \interesting" programs, there should be a primitive

recursion construct primrec 2 C

int!(int!int)!int

. All these constants get their meaning as-

signed in Postulation 2.17. Notice, by the way, that disjointness, here, means that there is no

overloading (one symbol having several types, and therefore several meanings). One should not

confuse disjointness of C

�

and C

�

with disjointness of [[�]] and [[�]] (cf. Postulation 2.14).

2.7 Postulation For each � 2 T let X

�

be a set (of variables), mutually disjoint, countably

in�nite and disjoint from the sets C

�

(� 2 T). We let x vary over X

�

.

2.8 Remark The postulation that variables are typed eliminates the need for introducing

a type assignment (that assigns a type to variables), and therefore simpli�es the presentation

slightly.

2.9 De�nition The set E (of expressions) is de�ned inductively as follows

1. c 2 E, whenever � 2 T; c 2 C

�

2. x 2 E, whenever � 2 T; x 2 X

�

3. (�x:e) 2 E, whenever � 2 T; x 2 X

�

; e 2 E

4. e(e

0

) 2 E, whenever e; e

0

2 E

5. (if e then e

0

else e

00

) 2 E, whenever e; e

0

; e

00

2 E

6. ha

i

= e

i

(i 2 m)i 2 E, whenever a

i

2 L; e

i

2 E (i 2 m) and a

1

< a

2

< : : : < a

m

and

m � 0

7. e:a 2 E, whenever e 2 E; a 2 L

8. [a = e] 2 E, whenever e 2 E; a 2 L

9. (case e of a

1

: e

1

; : : : ; a

m

: e

m

) 2 E, whenever e; e

i

2 E; a

i

2 L (i 2 m) and

a

1

< a

2

< : : : < a

m

and m � 1

We let e vary over E.

(Clause 3 de�nes function expressions, with parameter x and body e. Clause 4 de�nes

function application, e being the function and e

0

the argument expression. Clause 6 de�nes

a record expression, clause 7 a record selection. Clause 8 de�nes the expression for injection

into some variant: e tagged with a as a member of some disjoint union. Clause 9 de�nes a

case-selection: variant value e is untagged and then subject to function e

i

if its tag was a

i

. All

the above-mentioned intended meanings of expressions are formalized in the semantics below,

in 2.19.)

2.10 De�nition The relation : on E � T (e : � is pronounced as: e is well-typed and has

type �) is de�ned inductively as follows

1. c : � , whenever c 2 C

�

2. x : � , whenever x 2 X

�

3. (�x:e) : (� ! �), whenever x 2 X

�

; e : �

4. e(e

0

) : � , whenever e : (� ! �); e

0

: �

5. (if e then e

0

else e

00

) : � , whenever e : bool; e

0

: �; e

00

: �

5

6. ha

i

= e

i

(i 2 m)i : ha

i

: �

i

(i 2 m)i, whenever e

i

: �

i

(i 2 m)

7. e:a : � , whenever e : ha

i

: �

i

(i 2 m)i; a = a

j

; � = �

j

for some j (1 � j � m)

8. [a = e] : [a

i

: �

i

(i 2m)], whenever a = a

j

; e : �

j

for some j (1 � j � m)

9. (case e of a

1

: e

1

; : : : ; a

m

: e

m

) : � , whenever e : [a

i

: �

i

(i 2 m)]; e

i

: (�

i

! �) (i 2 m)

As an example, it is easy to verify that, for x 2 X

int

; (�x: succ(succ(x))) : (int! int), and,

for x 2 X

real

; (�x: add1(add1(x))) : (real! real).

2.11 Lemma For any e 2 E; � 2 T , there is at most one way to derive e : � .

Proof Easy induction on the structure of e.

2.12 Remark It is not true that for any e 2 E there is at most one � 2 T for which e : � .

The ambiguity in the type of e is entirely due to clause 8 of 2.10. Lemma 2.11 shows that a type

derivation is not ambiguous. So we may formulate de�nitions by induction on the derivation of

a typing e : � as in 2.19 below.

2.13 De�nition For � 2 T we de�ne E

�

= fe 2 E j e : �g.

� � �

Now we turn to the semantics of types and expressions.

2.14 Postulation For � 2 B let [[�]] be a non-empty set. Let [[bool]] = ftt; ffg with tt 6= ff .

(We do not require disjointness of the [[�]]. For example, one could postulate [[int]] = Z; [[real]] =

R, with, as usual, Z � R. However, it is also possible to postulate [[int]] = h+j�ihdigiti

�

and

[[real]] = h+j�ihdigiti

�

h:ihdigiti

�

, so that [[int]] and [[real]] are disjoint.)

2.15 De�nition For each � 2 T a set [[�]] is de�ned by induction on the structure of � as

follows

1. [[�]] has been postulated in 2.14

2. [[(� ! �)]] = [[�]]! [[�]] = the set of all total functions from [[�]] to [[�]]

3. [[ha

i

: �

i

(i 2 m)i]] = the set of total functions with domain fa

1

; : : : ; a

m

g that map a

i

into

[[�

i

]] for all i 2 m. We shall denote such a function f by its \graph" f(a

1

; d

1

); : : : ; (a

m

; d

m

)g,

or f(a

i

; d

i

) j i 2 mg, meaning that f(a

i

) = d

i

(i 2 m)

4. [[[a

i

: �

i

(i 2 m)]]] = f(a

i

; d

i

) j 1 � i � m ^ d

i

2 [[�

i

]]g

We let d vary over any [[�]].

2.16 De�nition U =

S

�2T

[[�]], the universe in which the semantics of both types and

expressions shall �nd their place, both with and without subtyping.

2.17 Postulation For each � 2 T; c 2 C

�

let [[c]] be some member of [[�]].

Let [[true]] = tt; [[false]] = ff .

(Here the semantics [[zero]]; [[succ]]; [[null]]; [[add1]]; [[primrec]] have to be chosen in such a

way that we get the intended respective meanings of these constants.)

2.18 De�nition An assignment A is a family of functions A

�

2 X

�

! [[�]]; (� 2 T). For

assignment A; � 2 T; x 2 X

�

; d 2 [[�]] we de�ne the assignment A[x 7! d] for all � 2 T; y 2 X

�

by

6

(A[x 7! d])

�

(y) = A

�

(y) , if � 6= � or y 6= x

= d , if � = � and y = x

2.19 De�nition Let A be an assignment. Functions [[]]

�

A

2 E

�

! U are de�ned by induction

on the derivation of their typing as follows

1. [[c]]

�

A

= [[c]] as postulated in 2.17, whenever c 2 C

�

2. [[x]]

�

A

= A

�

(x), whenever x 2 X

�

3. [[(�x:e)]]

�!�

A

= �d 2 [[�]]: [[e]]

�

A[x7!d]

, whenever x 2 X

�

; e : � .

(On the right hand side we have used � as a notation on the meta-level for functions.)

4. [[e(e

0

)]]

�

A

= f(d), where f = [[e]]

�!�

A

; d = [[e

0

]]

�

A

, whenever e : (� ! �); e

0

: �

5.

[[if e then e

0

else e

00

]] = [[e

0

]]

�

A

, if [[e]]

bool

A

= tt

= [[e

00

]]

�

A

, if [[e]]

bool

A

= ff

whenever e : bool; e

0

: �; e

00

: �

6. [[ha

i

= e

i

(i 2 m)i]]

ha

i

:�

i

(i2m)i

A

= f(a

i

; [[e

i

]]

�

i

A

) j i 2 mg, whenever e

i

: �

i

(i 2 m)

7. [[e:a]]

�

A

= f(a), where f = [[e]]

ha

i

:�

i

(i2m)i

A

, whenever e : ha

i

: �

i

(i 2 m)i; a = a

j

; � = �

j

for some j; 1 � j � m

8. [[[a = e]]]

[a

i

:�

i

(i2m)]

A

= (a; [[e]]

�

j

A

), whenever a = a

j

; e : �

j

for some j; 1 � j � m

9.

[[case e of a

1

: e

1

; : : : ; a

m

: e

m

]]

�

A

= [[e

1

]]

�

1

A

(d) , if a = a

1

:

:

= [[e

m

]]

�

m

A

(d) , if a = a

m

(where (a; d) = [[e]]

[a

i

:�

i

(i2m)]

A

), whenever e : [a

i

: �

i

(i 2 m)]; e

i

: (�

i

! �) (i 2 m):

2.20 Theorem For each � 2 T; e 2 E

�

: [[e]]

�

A

2 [[�]]:

Proof Easy induction on the derivation of e : � .

2.21 Remark It is now standard practice to show that [[e]]

�

A

= [[e]]

�

A

0

if A and A

0

coincide

on the free variables of e. Therefore, for closed e one may set [[e]]

�

= [[e]]

�

A

for any A.

3 Adding subtyping

We speak of subtyping when there exists a partial order on types, and the typing rules are

extended to the e�ect that

an expression e that has type � may occur at a position where a supertype � of � is required;

or in other words

7

e : � whenever e : � and � � �:

This, however, is only a syntactic consequence of subtyping. Semantically the discipline of

subtyping may be used

� to control the automatic insertion of �xed \conversion" functions cv

���

at appropriate

places

� to model the inheritance relation in (abstract) object-oriented languages

(cf. [Cardelli 1984])

� to reect syntactically (axiomatically) some semantic facts like [[int]] � [[real]]:

It happens that the �rst of these uses also covers the second and the third, by simply

choosing some conversion functions to be the identity function. Reynolds [Reynolds 1985] gives

a thorough syntactic treatment of subtyping with special attention to the �rst use above (but

discusses the semantics only informally), and we shall follow him closely. We urge the reader to

consult [Reynolds 1985] for more information.

3.1 Postulation Let �

B

be a relation on B �B and let, for each �; �

0

2 B with

� �

B

�

0

; cv

���

0

be a function in [[�]]! [[�

0

]], such that the following properties hold true

(�

B

) �

B

is a partial order

(LUB

B

) if two basic types have a common �

B

- upper bound, then they have a �

B

- least upper

bound

(GLB

B

) if two basic types have a common �

B

- lower bound, then they have a �

B

- greatest

lower bound

(ID

B

) cv

���

= identity

�

2 [[�]]! [[�]]

(TR

B

) cv

�

0

��

00

� cv

���

0

= cv

���

00

, for � � �

0

� �

00

, where the operation � denotes function

composition: (f � g)(x) = f(g(x)):

As an example, whether [[int]] � [[real]] actually holds or not, one may choose int � real, provided

that cv

int�real

is de�ned as some function from [[int]] to [[real]] satisfying the requirements listed

above.

3.2 Remark Cardelli [Cardelli 1984] models the inheritance relationship in object-oriented

languages by means of subtyping, and then chooses �

B

to be the identity on basic types. This

simpli�cation does not simplify the theorems or proofs in an essential way.

3.3 Remark Another special case of the postulation above is the requirement that for

� �

B

�

0

it holds that [[�]] � [[�

0

]]. In this case we can de�ne the conversion functions cv

���

0

as

identities, and we can prove (ID

B

) and (TR

B

). Again we have chosen the more general case

above, because it does not complicate the forthcoming de�nitions and proofs.

3.4 De�nition We de�ne a relation � on T � T and, simultaneously, for each pair �; � 2 T

with � � � , a function cv

���

2 [[�]]! [[�]], by induction as follows

1. if � �

B

�

0

then:

� � � �

0

� cv

���

0

is postulated in 3.1

8

2. let � = (�

1

! �

2

) and � = (�

1

! �

2

); if �

1

� �

1

and �

2

� �

2

then:

� � � �

� cv

���

(f) = cv

�

2

��

2

� f � cv

�

1

��

1

for f 2 [[�

1

! �

2

]]

(Note the monotonicity of � in the result part and the anti-monotonicity in the parameter

part.)

3. let � = ha

i

: �

i

(i 2 m)i and � = ha

j

i

: �

j

i

(i 2 n)i; if j

1

; : : : ; j

n

is a (not necessarily

contiguous) sub-sequence of 1; : : : ;m and �

j

i

� �

j

i

(i 2 n) then:

� � � �

� cv

���

(f(a

i

; d

i

) j i 2 m g) = f(a

j

i

; cv

�

j

i

��

j

i

(d

j

i

)) j i 2 n g

4. let � = [a

j

i

: �

j

i

(i 2 n)] and � = [a

i

: �

i

(i 2 m)]; if j

1

; : : : ; j

n

is a (not necessarily

contiguous) sub-sequence of 1; : : : ;m and �

j

i

� �

j

i

(i 2 n) then:

� � � �

� cv

���

((a

j

i

; d)) = (a

j

i

; cv

�

j

i

��

j

i

(d)).

3.5 Remark

1. In [Reynolds 1985] a di�erent de�nition is given of subtyping for record and variant types.

This is done by splitting clauses 3 and 4 in De�nition 3.4 in both cases into two separate

sub-clauses. For example, in the case of record types, clause 3 is replaced by

3a. � = ha

i

: �

i

(i 2 m)i; � = ha

i

: �

i

(i 2 m)i; �

i

� �

i

(i 2 m)) � � �

3b. � = ha

i

: �

i

(i 2 m)i; � = ha

j

i

: �

j

i

(i 2 n)i) � � �

This alternative, as such, however, leads to the invalidness of the desired conclusion that

� constitutes a partial order (cf. Lemma 3.6), because transitivity of � can not be proved

anymore, without explicitly adding an extra clause to such a de�nition that any com-

bination of the clauses mentioned also generates a pair of types belonging to the sub-

type relation (but this is just what the property of transitivity amounts to)! In such an

alternative de�nition the steps are just too small to imply transitivity. (For example,

ha : int; b : booli � ha : reali can not be proved by either appealing to clause 3a or

appealing to clause 3b, given that int � real, but it can be proved by appealing to our

clause 3 in De�nition 3.4.)

2. Any of the clauses -except for the �rst- in the preceding de�nition may be omitted without

invalidating the lemmas and theorems to come. Actually, it is the very existence of a

\natural" conversion function cv 2 [[�]] ! [[�]] that allows, but does not force, to add the

de�nitions � � � and cv

���

= cv. Here \natural" can be made precise: the addition of

the clauses � � � and cv

���

= cv should not invalidate the next lemma.

3.6 Lemma (cf. [Reynolds 1985]) The relation � and functions cv

���

(for � � �) satisfy

the following properties

(�) � is a partial order on T � T

(LUB) if two types have a common �-upper bound, then they have a �-least upper bound

(GLB) if two types have a common �-lower bound, then they have a �-greatest lower bound

9

(ID) cv

���

= identity

�

2 [[�]]! [[�]]

(TR) cv

���

� cv

���

= cv

���

, for � � � � � .

Proof

Case (�) It is easily veri�ed that any of the de�ning clauses for � preserves the reexivity, anti

symmetry, and transitivity (of the initial partial order �

B

)

Case (LUB, GLB) First we constructively de�ne partial operations t;u 2 T � T ,! T that

will yield the required least and greatest bounds:

� For �; �

0

2 B that have a �

B

-upper bound, we de�ne � t �

0

to be the �

B

-lub that

exists on account of postulation 3.1; analogously, for �; �

0

2 B that have a �

B

-lower

bound we de�ne � u �

0

to be the �

B

-glb that exists on account of 3.1

� For � = (�

1

! �

2

); � = (�

1

! �

2

) for which �

1

t �

1

; �

1

u �

1

; �

2

t �

2

; �

2

u �

2

exist,

we de�ne

� t � = (�

1

u �

1

)! (�

2

t �

2

)

� u � = (�

1

t �

1

)! (�

2

u �

2

)

� For � = ha

i

: �

i

(i 2 m)i; � = hb

j

: �

j

(j 2 n)i we de�ne � t �; � u � as follows. Let

c

1

; : : : ; c

p

be the ordered sequence of labels (of minimal length) containing exactly

all a

i

(i 2 m) and b

j

(j 2 n). Furthermore let d

1

; : : : ; d

q

be the (not necessarily

contiguous) sub-sequence (of maximal length) of c

1

; : : : ; c

p

that is a sub-sequence of

both a

1

; : : : ; a

m

and b

1

; : : : ; b

n

. Then

� t � = hd

l

: �

l

(l 2 q)i, where �

l

= �

i

t �

j

, with i; j such that a

i

= d

l

= b

j

� u � = hc

k

: �

k

(k 2 p)i, where

�

k

=

8

>

<

>

:

�

i

, if c

k

= a

i

=2 fb

1

; : : : ; b

n

g

�

i

u �

j

, if a

i

= c

k

= b

j

�

j

, if c

k

= b

j

=2 fa

1

; : : : ; a

m

g

where it is assumed that all the �

i

t �

j

and �

i

u �

j

occurring in the formulas above

exist.

� For � = [a

i

: �

i

(i 2 m)]; � = [b

j

: �

j

(j 2 n)] we de�ne � t �; � u � as follows. Let

c

1

; : : : ; c

p

and d

1

; : : : ; d

q

be ordered sequences of labels as constructed above, then

� t � = [c

k

: �

k

(k 2 p)], where

�

k

=

8

>

<

>

:

�

i

, if c

k

= a

i

=2 fb

1

; : : : ; b

n

g

�

i

t �

j

, if a

i

= c

k

= b

j

�

j

, if c

k

= b

j

=2 fa

1

; : : : ; a

m

g

� u � = [d

l

: �

l

(l 2 q)], where �

l

= �

i

u �

j

, with i; j such that a

i

= d

l

= b

j

:

It is furthermore assumed that all the �

i

t �

j

and �

i

u �

j

occurring in the formulas

above exist.

Now it is easy to prove, for arbitrary �; �; � :

� � � ^ � � � =) �; � � � t � (exists!) � �

� � � ^ � � � =) � � � u � (exists!) � �; �

by induction on the derivation of � � � and using the following fact:

for arbitrary � and � ,

10

� � � implies

either : � and � are both basic types and � �

B

�

or: � = (�

1

! �

2

); � = (�

1

! �

2

) and �

1

� �

1

and �

2

� �

2

or: � = ha

i

: �

i

(i 2 m)i; � = ha

j

i

: �

j

i

(i 2 n)i and j

1

; : : : ; j

n

is a sub-sequence of

1; : : : ;m and �

j

i

� �

j

i

(i 2 n)

or: � = [a

j

i

: �

j

i

(i 2 n)]; � = [a

i

: �

i

(i 2 m)] and j

1

; : : : ; j

n

is a sub-sequence of

1; : : : ;m and �

j

i

� �

j

i

(i 2 n)

This fact can be proved by induction on the derivation of � � � .

Case (ID, TR) These cases are easily proved by induction on the derivation of the subtype

relation, in case (TR) using again the above fact.

3.7 Remark None of the properties (LUB), (GLB), (ID) or (TR) is used in the present

section: the de�nition of the syntax and semantics of the language with subtyping. Properties

(LUB) and (GLB), as well as the operations t and u, are needed to de�ne a minimal typing

and to prove the soundness and completeness, in 4.2 and 4.7 below. Properties (ID) and (TR)

are then used to complete the proof of the well-formedness of the semantics, in 4.8.

3.8 Remark It was the main intention of this paper to show that subtyping should , some-

how, imply set inclusion; however, for the semantics for types de�ned thus far this is not yet

the case { i.e., � � � does not imply [[�]] � [[�]], for arbitrary types �; � . For example, take

� = ha : int; b : reali and � = ha : inti (the reader can easily verify that in this case � � � holds,

but not [[�]] � [[�]]). Also we can take (cf. Section 1) � = (real ! int) and � = (int ! int)

to yield a contradiction for the statement � � �) [[�]] � [[�]]. This motivates to de�ne a new

semantics, written [f g].

3.9 De�nition For � 2 T we de�ne

[f�g] =

[

���

[[�]]

3.10 Theorem For �; � 2 T : � � �) [f�g] � [f�g].

Proof

[f�g] =

S

���

[[�]]

�

S

���

[[�]] (by transitivity of � and � � �)

= [f�g] :

3.11 De�nition A new relation : on E � T is de�ned inductively as follows

1. { 9. as for the old relation : in De�nition 2.10

10. e : � , whenever e : � and � � � .

3.12 Remark The new relation : is an extension of the old relation. Note that due to clause

10 an expression may have several types (e : � and e : � for distinct �; �) and that a typing

e : � may have several derivations.

3.13 De�nition Let A be an assignment. Functions [f g]

�

A

2 E

�

! U are de�ned by

induction on the derivation of the argument's type

11

1. - 9. as for the functions [[]]

�

A

2 E

�

! U in De�nition 2.19 (replacing [[]] by [f g])

10. [feg]

�

A

= cv

���

([feg]

�

A

) whenever e : � and � � � .

3.14 Remark For given e and � there may exist several distinct derivations of e : � and

therefore we have to show that this syntactic ambiguity does not lead to semantic ambiguity.

In principle, we cannot claim that De�nition 3.13 de�nes functions [f g]

�

A

but only relations

\[f g]

�

A

= : : :"; we are faced with the problem to prove directly that the relations are functions,

i.e.

[feg]

�

A

= d ^ [feg]

�

A

= d

0

) d = d

0

Another problem is that functions [f�x:eg]

�!�

A

become -in principle- nondeterministic and, com-

pared to De�nition 2.19, the structure of the universe changes drastically. We are faced with

some serious technical problems here. The next section is devoted to their solution.

4 Minimal typing

In this section we give another system for the language with subtyping, that in view of Theorem

4.7 is called a system with minimal typing . Minimal typing turns out to be sound and complete

with respect to the typing in Section 3. A minimal type of an expression can be derived in at

most one way, ensuring that we can safely base a de�nition of a semantics [[]]

�

A

on the derivation

of an expression's minimal type, like in De�nition 2.19. In terms of [[]]

�

A

we can express the

unique solution of the equations for [f g]

�

A

in De�nition 3.13.

4.1 De�nition A partial operation t 2 T � T ,! T is de�ned as follows. For �; � 2 T that

have a common �-upper bound,

� t � = the �-least upper bound (that exists on account of (LUB) in Lemma 3.6).

4.2 De�nition The relation :: on E � T (e :: � is pronounced as � is the minimal type of e)

is de�ned inductively as follows

1. c :: � , whenever c 2 C

�

2. x :: � , whenever x 2 X

�

3. (�x:e) :: (� ! �), whenever x 2 X

�

; e :: �

4. e(e

0

) :: � , whenever e :: (� ! �); e

0

:: �

0

and �

0

� �

5. (if e then e

0

else e

00

) :: � , whenever e :: �; � � bool; e

0

:: �

0

; e

00

:: �

00

and � = �

0

t �

00

(and

exists)

6. ha

i

= e

i

(i 2 m)i :: ha

i

: �

i

(i 2 m)i, whenever e

i

:: �

i

(i 2m)

7. e:a :: � , whenever e :: ha

i

: �

i

(i 2m)i; a = a

j

; � = �

j

for some j, 1 � j � m

8. [a = e] :: [a : �], whenever e :: �

9. (case e of a

1

: e

1

; : : : ; a

m

: e

m

) :: � , whenever e :: �; � � [a

i

: �

i

(i 2 m)];

e

i

:: (�

i

! �

i

) (i 2 m); � = �

1

t : : : t �

m

(and exists)

We say that e is minimally typable if e :: � for some � 2 T .

(Notice, in advance, that, by Theorem 4.7.2, every typable expression has a minimal type.)

12

4.3 Lemma For any e 2 E there is at most one � 2 T such that e :: � and there is at most

one derivation of e :: � .

Proof Easy by induction on the structure of e.

4.4 De�nition Let A be an assignment. A partial function [[]]

�

A

2 E ,! U is de�ned, for

minimally typable expressions, as follows by induction on the derivation of the minimal type of

its argument

1. [[c]]

�

A

= [[c]] as postulated in 2.17, whenever c 2 C

�

2. [[x]]

�

A

= A

�

(x), whenever x 2 X

�

3. [[�x:e]]

�

A

= �d 2 [[�]]:[[e]]

�

A[x7!d]

, whenever x 2 X

�

; e :: �

4. [[e(e

0

)]]

�

A

= f(cv

�

0

��

(d)), where f = [[e]]

�

A

; d = [[e

0

]]

�

A

, whenever e :: (� ! �); e

0

:: �

0

and

�

0

� �

5.

[[if e then e

0

else e

00

]]

�

A

= cv

�

0

��

([[e

0

]]

�

A

) , if d = tt

= cv

�

00

��

([[e

00

]]

�

A

) , if d = ff

(where d = cv

��bool

([[e]]

�

A

)) , whenever e :: �; � � bool; e

0

:: �

0

; e

00

:: �

00

; � = �

0

t �

00

(and

exists)

6. [[ha

i

= e

i

(i 2 m)i]]

�

A

= f(a

i

; [[e

i

]]

�

A

) j i 2 mg, whenever e

i

:: �

i

(i 2 m)

7. [[e:a]]

�

A

= f(a), where f = [[e]]

�

A

, whenever e :: ha

i

: �

i

(i 2 m)i; a = a

j

for some j; 1 � j � m

8. [[[a = e]]]

�

A

= (a; [[e]]

�

A

) , whenever e :: �

9.

[[case e of a

1

: e

1

; : : : ; a

m

: e

m

]]

�

A

= cv

�

1

��

([[e

1

]]

�

A

(d)) , if a = a

1

:

:

= cv

�

m

��

([[e

m

]]

�

A

(d)) , if a = a

m

(where (a; d) = cv

��[a

i

:�

i

(i2m)]

([[e]]

�

A

)) , whenever e :: �; � � [a

i

: �

i

(i 2 m)],

e

i

:: (�

i

! �

i

) (i 2 m); � = �

1

t : : : t �

m

(and exists).

4.5 Theorem For e 2 E; � 2 T :

e :: �) [[e]]

�

A

2 [[�]]

Proof Easy induction on the derivation of e :: � .

4.6 Corollary For e 2 E; � 2 T :

e :: �) [[e]]

�

A

2 [f�g]:

Thus we have succeeded in designing semantics [[]]

�

A

and [f g] such that

� � � �) [f�g] � [f�g], and

� e :: �) [[e]]

�

A

2 [f�g]

13

However, the well-formedness of De�nition 3.13 has yet to be shown.

4.7 Theorem [Reynolds 1985]

1. (soundness) e :: �) e : �

2. (completeness) e : �) e :: �, for some � 2 T

3. (minimality) e : � ^ e :: �) � � �

Proof

1. Easy induction on the derivation of e :: �, using the fact that if � = � t � exists, then � � �

and � � � (from (LUB)).

2,3. These are proved simultaneously, i.e.

e : �) e :: � ; for some � � �

by induction on some (any!) derivation of e : � using property (LUB) and transitivity of

�.

4.8 Theorem De�nition 3.13 de�nes functions [f g]

�

A

2 E

�

! [f�g] given by

[feg]

�

A

= cv

���

([[e]]

�

A

)

where � is the existent and unique type such that e :: � and � � � (by Theorem 4.7).

Proof It is rather simple to show by straightforward reasoning (no induction required) that

the functions cv

���

� [[]]

�

A

(where � is the minimal type of the argument 2 E

�

) satisfy each of

the equations in De�nition 3.13. Here properties (ID) and (TR) of Lemma 3.6 are used. On the

other hand, for any function [f g]

�

A

satisfying equations 1-10 of 3.13, it easily follows by induction

on the structure of e that [feg]

�

A

= cv

���

([[e]]

�

A

), for all e 2 E

�

, where � is the minimal type of e.

Here again properties (ID) and (TR) are of importance.

4.9 Remark In retrospect, the results achieved in this paper can be summarized in a nut

shell by the following equation

[feg]

�

A

= [[e]]

�

A

2 [[�]] �

[

���

[[�]] = [f�g] � [f�g]

for e :: � � � .

Acknowledgement We thank Jan Kuper for fruitful discussions.

REFERENCES

[Bruce, Wegner 1987]

Bruce, K. and Wegner, P.: \An Algebraic Model of Subtype and Inheritance"; in: Pro-

ceedings of the Workshop on Database Programming Languages; Rosco�, France, 1987,

pp.107 -132.

[Cardelli 1984]

Cardelli, L.: \A Semantics of Multiple Inheritance"; in: \Semantics of Data Types" (eds.

Kahn, MacQueen and Plotkin), Lecture Notes in Computer Science 173, Springer Verlag

1984, pp. 51-68.

14

[Cardelli, Wegner 1985]

Cardelli, L. and Wegner, P.: \On understanding types, data abstractions and polymor-

phism". Comp. Surveys 17, pp. 471-522, 1985.

[Fokkinga 1981]

Fokkinga, M.M.: \On the notion of strong typing"; in: Algorithmic Languages (eds. de

Bakker, van Vliet), North Holland, Amsterdam, 1981, pp. 305-320.

[Fokkinga 1987]

Fokkinga, M.M.: \Programming Language Concepts { the Lambda Calculus Approach";

in: Essays on Concepts, Formalisms, and Tools (eds. Asveld, Nijholt), CWI Tract 42,

CWI, Amsterdam, 1987, pp. 129-162.

[Fuh, Mishra 1988]

Fuh, Y.C., Mishra, P.: \Type Inference with Subtypes"; in: Proceedings 2

nd

European

Symposium on Programming (ESOP 88) (ed. H. Ganzinger), Lecture Notes in Computer

Science 300, 1988, pp.94-114.

[Gries 1978]

Gries, D.: \Programming Methodology- a collection of articles by members if IFIP WG

2.3", Springer Verlag, 1978.

[Hindley, Seldin 1986]

Hindley, J.R, Seldin, J.P.: \Introduction to Combinators and Lambda Calculus", London

Mathematical Society Student Texts 1, Cambridge University Press, Cambridge (U.K.),

1986.

[MacQueen et al 1984]

MacQueen, D.B., Seti, R., Plotkin, G.D.: \An Ideal Model for Recursive Polymorphic

Types"; in: Conference record of the 11

th

annual ACM Symposium on Principles of Pro-

gramming Languages (11

th

POPL), ACM, 1984, pp. 165-175.

[Reynolds 1984]

Reynolds, J.C.: \Polymorphism is not Set-Theoretic"; in: Semantics of Data Types (eds.

Kahn, MacQueen, Plotkin), Lecture Notes in Computer Science 173, Springer Verlag 1984,

pp. 145-156.

[Reynolds 1985]

Reynolds, J.C.: \Three Approaches to Type Structure"; in \Mathematical Foundations of

Software Development"(eds. Ehrig e.a.), Lecture Notes in Computer Science 185, Springer

Verlag 1985, pp. 97-138.

[Stansifer 1988]

Stansifer, R.: \Type Inference with Subtypes"; in: Conference Record of the 15

th

Annual

ACM Symposium on Principles of Programming Languages (POPL 88), 1988, pp.88-97.

[Wand 1987]

Wand, M.: \Complete Type Inference for Simple Objects"; in: Proceedings 2

nd

Annual

Symposium on Logic in Computer Science (LICS 87), 1987, pp. 37-44.

15

