Technische Hogeschool Twente

MEMORANDUM NR. INF-84-3

A notation for the most general

" form of repetition.

Maarten M. Fokkinga.

February 1984

Department of Informatics
P.O. Box 217

7500 AE Enschede

The Netherlands.

Onderafdeling der Informatica

Contents Page

0. Introduction

1. The it-ti and init construct
2. The all-embracing notation
3. Examples

4, Can’t we improve upon it?

5. Conclusion

O W 00 U W N -

References

Abstract We present a notation with which all forms of repetition (like

the well known while, repeat, Dijkstra’s do od, Parna§?/1£_£1, Zahn’s

events, multi-level exits, and so on) can be written in a very simple and

uniform way.

Footnotes have been listed on the last page.

0 Introduction

Since the banishment of the goto there has been a continuing stream
of proposals for particular forms of repetition. Among these are repeat-
until, while-do-until, exits in the middle of a loop, multi-level exits,
until-events (Zahn 1974), do-od (Dijkstra 1975), and so on. All these

proposals are motivated with considerations concerning efficiency (no need
for additional boolean variables, no need for extra tests), readability
and methodology (Zahn’s events), and provably correct program construction

(pijkstra’s do-od).

Recently this list has been extended with the it-ti comstruct of
(Parnas 1983); a generalisation of repetition, embracing both the if-fi
and do-od of (Dijkstra 1975). It is Parnas’ paper in the Communications of
the ACM, that has prompted us to write this note: another notation for
repetition which seems to be the ultimate in combining generality and
simplicity. The underlying idea is simple: recursion and name-giving are
the canonical way to denote a large class of infinite programs in a finite
way. Though this is really folklore for some part of the Computing Science
Community, it is apparent from the literature on the subject that the idea

is not generally well-known.

In what follows we give a brief exposition of Parnas’ proposal in
Section 1; this may be skipped by readers already familiar with that
construct., In Section 2 we present and motivate our notation; examples are
dealt with in Section 2. Then the sections "Can’t we improve upon it" and Y

the Conclusion follow.

1 The it-ti and init construct

The it-ti comstruct (1) (Parnas 1983) is a combination of both the
if-fi and do-od of (Dijkstra 1975, 1976). We assume the if-fi and do-od to
be known. An example of the it-ti construct is as follows, Assume m and n

being constants satisfying m < n;

{i<m} it i<n —=> i := i+1+[] m<i —> skip + ti {m<iln}

The execution proceeds as follows. At least one of the guards must

evaluate to true, and its fellow command is then obeyed. If several guards

evaluate to true, then a nondeterministic choice is made. The delimiter ¢
respectively + indicates whether the repetition is to be continued or
terminated. (The example program establishes m<{i<n; and any such value of
i may be achieved by appropriate nondeterministic choices. In (Fokkinga
1978 a) this property is called "pure": the program is pure with respect

to precondition i < m and postcondition m<i<n.)

It is not difficult to express if-fi or do-od by means of it-ti. Take
all delimiters ¥ and you get if-fi. The do-od can be got by taking all
delimiters * and adding the following line:

else --> skip ¥

An important gain of the it-ti is that both the continuation conditions
and the termination conditions have to be expressed separately. Usually
one is the negation of the other. The advantage of separately mentioning

them has also been formulated by (Fokkinga 1978 b).

Somewhat independent of the it-ti is Parnas’ init construct. The
expression init is a boolean.constant denoting true during the first turn
of the repetition, and false in subsequent turns; (2). Using init both
duplication of text and redundant tests may be avoided. An example,
isomorphic to the one presented by Parnas, reads as follows. The integer
variable exp is to be initialized to 2**k where k is a natural number to
be read from input. The user gets at most three chances to type in an

integral number.

n := 0;

it not init cand k > 0 --> exp := 2%%k ¥

elif init or n < 3 --> k := read; n :t=n + 1 ¢

elif true —-> skip ¥

23

{exp initialised iff k > 0}

Here and in the sequel we use elif as an abbreviation of " [] (not any of
the preceding conditions) and", and cand doesn’t evaluate its second
operand if the outcome is already determined by its first operand

("conditional and").

2

The all-embracing notation

Before reflecting on notations for repetition, let us first have a look
at programs in general. In principle a program is built from
assignments: x := e
by means of the compositions
sequencing: prog0O; progl
choice: if b0 —-> prog0 M1 ... {] bn -—> progn fi

(possibly with the abbreviations elif, else, cand and so on, as mentioned

in Section 1). With an obvious notation there is this great disadvantage:
the computation invoked by a program is at most as long as the program
text itself. Therefore we introduce two notations in order to overcome
this. The most important is a notation to denote infinite programs (so
with possibly infinite computations) in a finite way. The appropriate

means is recursion. The notation

idf :: prog

(called a recursive construct) denotes the infinite program that is

obtained by repeatedly replaeing the identifier idf in prog by this very
same construct. Let expr[x/expr’] denote the substitution of expr’ for all
occurences of x in expr. Then we have by definition that idf::prog is
semantically equivalent to

prog[idf / idf :: prog]
and that the infinite program equals _

prog[idf / prog[idf / prog[idf / ...]1]].

Here is a simple example: summation of 1 through n.

s :=0; i := 03

sumFurther ::

if i = n —> skip
N i<mn-->1i:=1i+1; s := s + i; sumFurther
fi

This text denotes the

infinite program

s :=0; 1 := 03

if 1 = n —> skip

D i<n-->1i:=1; s :=s8+ i;
if i = n --> skip

£i £1 £
Accidentally, all possibly invoked computations are finite; had we written
i # n instead of i < n, then the computation invoked for negative values

of n would have been infinite and nonterminating.

It is almost trivial to represent the do-od and it-ti in this

notation. Schematically it looks as follows.

eese [b —> progfl ... od becomes
-~> prog; do[] ... [l else —-> skip fi

=%
o]
= 18
Hh (O
.
.
°
=
o

it «o. 1 b--> prog 4] ...0 b" —> prog” +[] ... ti becomes
it :: if ... [b -=> prog; it[] ... 0b° == prog’l] ... fi

But there are more possibilities. Terminating and restarting of
repetitions on higher levels is possible; examples are given in the next
section. Also the proof rules do not essentially differ from conventional
rules for repetition. In order to prove {P}idf::prog{Q} it is sufficient
to prove {P}prog{Q} assuming that for each occurrence of idf in prog,
{P}idf{Q} holds. In such a proof (P,Q) is called the invariant pair; in

the above example an invariant pair is (s=14+2+...+i, s=1+2+...+n).

Actually the recursive construct is a parameterless recursive
procedure which is written in-place without being given a name in a
preceding definition. In case of tail recursion or last action recursion
(that is, idf occurs only as a very last command in prog) the recursive
construct can be implemented exactly as a conventional repetitive
construct, see (Knuth 1974), (Er 1983). Actually (Sussman 1982) shows that
such an implementation needs no specific optimization phases in the

compilation process!

The second part of our notation of programs is name-giving. The

notation

def idf = prog in prog’

denotes the program which is obtained from prog’ by substituting prog for
each occurrence of idf: prog’[idf/prog]. Please note that the notation
does not mean that first prog is executed and afterwards prog’. In

contrary, in prog’ idf is "called-by-name"!

3 Examples

Because of the simple representation of do-od by means of our
recursive construct, we may quote all of (Dijkstra 1976) as an
illustration of the use of our notation. That is quite a bit, (and for
some that will do). The transformation of it-ti into our notation is even

more simpler. In addition we present five more examples.

Example 0 Multi-level exit
It is requested to print the lst, 3rd, 6th, 10th, 15th ... number of the
input, up to end-of-file (eof).

i:=0;
restInput ::
({the i-th number has just been printed}
var j:=i;
skipJNumbers ::
if eof --> skip {multi-level exit!}
elif j=0 --> print(read); i:=i+l; restInput
elif {j>0} --> read; j:=j-1; skipJNumbers
fi

Another example of multi-level exits arises naturally when programming a

1inea£f search over a two-dimensional matrix; cfr. the next example.

Example 1 Lineair search titio
i A

The program below is the direct transitien of a scheme often found.
Actually the scheme is a simple application of Zahn’s event facilities;

see also the next example.

i:=1;

,’2

continueSearch ::
def found = print ("x occurs at position ", i)
; notFound = print ("x doesnot occur")
in if i=n+l --> notFound
elif a[i]=x --> found
elif {a[i]# x} --> i:=i+1; continueSearch
fi

Example 2 Zahn’s events

The reader may consult (Zahn 1974) for the motivation and explanation of

the events construct, as well as for a nontrivial example. Also (Knuth

1974) strongly supports it and gives various remarkable applicatons.

The construct allows 4% escape from the middle of a command sequence in a X

loop. We must admit that a direct transliteration of the scheme

—Li ——; if BO —> sL0 0 Bl —-> sLl 0 B --> . fi; s],w.

—>

requires SL to be named and invoked twice (or we could duplicate SL):

loop ::
def tail = SL; loop
in -—-; if BO --=> SLO; tail [Bl --> SLl; tail [B ——> skip fi

Knuth dislikes that name-giving (page 271 of (Knuth 1974)). But name-
giving might have itsbenefits too, for readability. Thus we would write ><

his example 6g (which uses Zahn’s events) as follows.

{The set of triples (A[t],L[t],R[t]) represents the nodes of a binary
tree; nil is represented by zero. The binagfy tree t is to be X
printed in pre-order.}
stack S; § := empty;
printTAndS::

def LtProcessed = print(A[t]); t:=R[t]; printTAndS
in if t # 0 —-> gotoLeftMostLeaf::
if L[t] =0 -—> skip
0 L[t] # 0 —— 8S<==t; t:=L[t];
gotoLeftMostLeaf
fi;
LtProcessed

elif nonempty(S) —-> t<==S; LtProcessed

elif true --> skip
£i

Example 3 More than normal iteration
In this illustration we exploit proper recursion. In integer variable m we
count the number of moves required for the towers of Hanoi of height n. We

annotate the program with a semi-formal correctness proof.

m := 03
hanoi {pre n=n0, m=m0; post m=m0+2**n0-1, n=n0}::
if n=0 --> skip {m=m0=m0+2**n0-1 qed}
1 n>0 —=> n := n-1; {n=n0-1, m=m0}
hanoi; {n=n0-1, m=m0+2**(n0-1)-1}
m := mtl; {m=m0+2**(n0-1)}
hanoi; {n=n0-1, m=m0+2**(n0-1)+2**(n0-1)-1}
n := o+l {n=n0, m=m0+2**n0-1 qed}

£1 4

Example 4 The init construct

We now present in our notation the example which motivated the use of
init, see Section 1. The consecutive n := 0 and n := ntl have been
combined into n := 1 ; apart from that the execution of this program has
exactly the same tests and assignments as the program from Section 1.
def try = k:=read
in
(try; n := 1;
completeTrial ::
if k > 0 —> exp := 2%*k
elif n<3 --> try; n := ntl; completeTrial
elif {n=3} ——> skip
fi

The duplication of text, namely the three occurrences of the identifier
try, is comparable with the two occurrences of init in the original
example, In addition there is now no need for cand, and "readability" has
surely not got worse. As said before, Parnas’ example is isomorphic to the

one above, see fig. 12b in (Parnas 1983).

4 Can’t we improve upon it?

If we generalize the recursive construct to allow for multiple mutual
recursion, then there is no problem in transliterating arbitrary flow
charts, or transition diagrams (Reynolds 1978), into our notation.
Basically the program becomes a multiple recursive construct, with
components uniquely corresponding to the labels and calling each other as
a last action; see (Knuth and Floyd 1971). Thus no additional variables or
computation steps are introduced. (One should of course not expect that
this improves the program in any respect.) (It is folklore that multiple
recursion can be expressed in single recursion in exchange for a

duplication of text.)

Nevertheless programs denoted with the recursive construct have a
very fegular, periodical structure. More complex infinite programs are
conciévable and sometimes needed as well. We think that the computations ><
invoked by such programs can not be named "repetitions". Despite it we

present a notation for them by way of curiosity.
To this end we introduce paramaterized programs:
(fct x. prog)

is an anonymous parameterized program. The so-called application

(fct x. prog)(a) is by definition equivalent to
def x=a in prog

The identifier x may belong to an arbitrary syntactic category; e.g. x may
be an expression identifier or a program identifier and so on. (Tennent
1981) shows that the notations (fct x. prog) and (fct x. prog)(a) arise
from the Principles of Abstraction and Qualification. In this way we
actually get at our disposal the (possibly typed) lambda calculus. We do
not pursue this topic here; the interested reader is referred to (Landin
1966), (Reynolds 1981) and (Fokkinga 1983).

5 Conclusion

We have considered programs as compositions of assignments by means

of sequencing and choice, and a notation has been presented to denote a
class of infinite programs. Apparently all forms of repetitions treated in

the literature appear to be expressible very simply in this notation.

However we do not claim that this work contains anything original or
surprising. For example, (Hehner 1979) arrives at a similar notation, but
from quite another viewpoint. Qur recursive construct is also a notational
variant of the mu-construct of (de Bakker and de Roever 1973); it might
even be said that it is just a disguised application of the fixed point
combinator of the lambda calculus. Notwithstanding all that it really is
disappointing that still notations are being proposed for only particular

and sometimes peculiar forms of repetition.

References

de Bakker, J.W. and de Roever, W.P.: A calculus for recursive program
schemes. In Proc. lst ICALP (ed M.Nivat), North-Holland, Amsterdam
(1973) pp 167-196.

Dijkstra, E.W.: Guarded commands, nondeterminacy and the formal derivation
of programs. Comm ACM_lé (1975) 8, pp 453-457.

Dijkstra, E.W.: A discipline of programming. Prentice Hall, Englewood
Cliffs N.J., (1976).

Er, M.C.: Optimizing procedure calls and returns. Software-Practice and
Experience 13 (1983) 10, pp 921-940.

Fokkinga, M.M.: Another difference between recursive refinement and
repetition. Internal report, Twente Univ. of Technology, (1978a).

Fokkinga, M.M.: A note on the pragmatics of the repetitive construct.
Internal report, Twente Univ. of Technology (1978b).

Fokkinga, M.M.: Structuur van Programmeertalen. (In Dutch). Lecture notes,
Twente Univ. of Technology (1983).

Hehner, E.C.: do considered od - a contribution to programming
methodology. Acta Informatica 4 (1979) 11, pp 287-305.

Knuth, D.E., Floyd, R.W.: Notes on avoiding goto statements. Information
Processing Letters 1 (1977) 1, pp 23-31, 177.

Knuth, D.E.: Structured programming with goto statements. Computing
Surveys 6 (1974) 4, pp 261-301.

Landin, P.J.: The next 700 programming languages. Comm ACM 9 (1966) 3, pp
157-166.

Parnas, D.L.: A generalized control structure and its formal definition.

]0

Comm ACM 26 (1983) 8, pp 572-581.

Reynolds, J.C.: Programming with transition diagrams. In Programming
Methodology (ed. D. Gries). Springer-Verlag, Berlin etc, (1978)
pp 153-165.

Reynolds, J.C.: The essence of Algol. In Algorithmic Languages (eds. J.W.
deBakker, J.C. vanVliet). North Holland, Amsterdam, (1981)
pp 345-372.

Sussman, G.J.: Notes on Lisp. In Functonal programming and its
applications (eds. J. Darlington, P. Henderson, D. Turner). Cambridge
Univ Press (1982)

Tennent, R.D.: Principles of programming Languages. Prentice-Hall,
Englewood Cliffs N.J. (1982).

Zahn, C.: A. control statement for natural topdown structured programming.

In Proc. Symposium on Programming (ed B. Robinet). LNCS 19 (1974)
pp 170-180

(1) We only consider iteration over select-lists, and write the select-
separator as a bar [l so as to stress the correspondence with
Dijkstra’s guarded commands. Parnas also mentions iteration over jury
lists, but apart from the definition he doesn’t discuss them at all

(That is "left to future research").

(2) One might be tempted to introduce the dual of init, namely last.

However this imposes serious problems on the implementer, as shown by

it last -—> skip + [] not last —> skip + ti

