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Introduction. In a seminal paper, Erik Meijer [6] enthusiastically shows an interesting
relation between the well-known SQL and OO representations of facts from the real world.
Phrased in terms of category theory, these turn out to be dualizations of each other (hence
he speaks of SQL and coSQL), and many of their properties are in some sense dual to each
other. This note enumerates most of his ideas in a quite different and more concise style, and
might be used as a compendium to his paper.

I will leave out all blah blah that I consider not relevant; in particular, I don’t present
syntactic expressions, for which Meijer uses C# and LINQ, but instead focus on semantics
(drawn as pictures!). Also, I skip the following topic:

The potential benefit for the database industry, including the claim that the theoretical
considerations of the paper might enable an economic growth.

Unfortunately, ACM’s type setting of Meijer’s paper has corrupted the lay-out of the syntactic
fragments and drawings considerably: symbols like => and ∈ and pictorial boxes like
have sometimes been left out wrongly and the lay-out of program fragments has sometimes
been corrupted.

This note first presents a running example, and then explains most of Meijer’s claims,
observations, and thoughts in a series of numbered paragraphs that use the running example.

Running example

The general case. Consider the following typical fragment of an ERD:

P r−−−−−− C

(One might interpret this fragment as modelling Professors being involved in Courses.)
Consider an instantiation having three P and two C instances, with the following relationship:

aaa . . . r ddd . . .

bbb . . . r
r

QQQQQQ
eee . . .

ccc . . .
x —r— y means

“(x , y) is a member of relation r”

In the SQL representation the programmer has to make sure that each instance has a key
attribute, say with values a, b, c, d , e, ..., and can then represent relation r by a separate table:
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a aaa . . . oo // d ddd . . .

b bbb . . . oo

(a, d)

(a, e)
(b, e)

iiTTTTTTT //
// e eee . . .

c ccc . . .
an arrow means that

“a value v is used to refer to the row with key value v”

In the OO representation each instance is an object, identified with an oid, say with values
α, β, γ, δ, ǫ, ..., and the programmer may and must use these oid’s to refer to the objects:

α aaa . . . , {δ, ǫ} //

,,ZZZZZZZZZZZZ
δ ddd . . . , {α}oo

β bbb . . . , {ǫ } // ǫ eee . . . , {α, β}oo

llZZZZZZZZZZZZ

γ ccc . . . , { }
an arrow means that

“a value ν is used to refer to the object with oid ν”

This representation consists of pairs (object id, object value), and since the object id’s are
really keys, this representation may also be called: key-value store. Each MapReduce
computation is based on a key-value store; remember from Dean [1]:

MapReduce(map,reduce,combine) : [KEY ×VALUE ] → [KEY ′ ×VALUE ′]

We will continue to use the term OO representation, rather than key-value store.

A special case. Meijer discusses only the following special case:

Relation r has for each instance c ∈ C precisely one instance p ∈ P .

(Now, r is even a function from C to P , and P may be interpreted as Parent and C as
Child.) Relation r can be represented in the SQL world by one key-valued attribute in the
C rows and no such things in the P rows, whereas it can be represented in the OO style by
one set-valued attribute of oid’s in the P objects and no such things in the C objects:

ERD: P 1
r−−−−−− C

instances: aaa . . . r ddd . . .

bbb . . . r

QQQQQQ
eee . . .

SQL repr: a aaa . . . d ddd . . . , aoo

b bbb . . . e eee . . . , a

llYYYYYYYYYYYY

OO repr: α aaa . . . , {δ, ǫ} //

,,YYYYYYYYYYYY
δ ddd . . .

β bbb . . . , { } ǫ eee . . .
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Observations and claims

In both the general and the special case, one may observe various “dualities”:

1 Extensional vs intensional identities. In the SQL representation, the identity of an
instance (the key) is present in its row representation (“extensional identity”), whereas in the
OO representation the identity (the oid) is absent in the object representation (“intensional
identity”).

2 High vs low retrieval cost. In the SQL representation, the retrieval of rows r -related
to the row with key value a, requires an expensive search (a scan of the table) whereas in
the OO representation the retrieval of objects r -related to the object with oid α, is cheap (a
simple dereference). See also §6.

3 Typedness vs untypedness. The presence of key values that can be manipulated
by the SQL programmer and that play a role in the integrity constraints (see §9), forces
rows to be typed, at least to the degree that key attributes have a type. The fact that oid
values cannot be manipulated by the OO programmer, allows objects to be untyped, at least
regarding the oid values.

4 Representation of relation r . (This is my own observation about a nice symmetry, not
mentioned by Meijer.) Look at the pictures of the general case. In the SQL representation,
relation r is represented in a centralized way as a separate table containing all pairs (x , y)
from r . In the OO representation, relation r is represented in a distributed way: a P object
with oid x contains {y | (x , y) ∈ r} and an C object with oid y contains {x | (x , y) ∈ r}.

Now look at the special case. In the SQL representation, a C row with key value y

contains (the unique member of) {x | (x , y) ∈ r}. In the OO representation, a P object with
oid x contains {y | (x , y) ∈ r}.

5 Categorical duality. Look at the pictures of the SQL and OO representation for the
special case: disregarding the key values and object id’s, the pictures are the same except
that the arrows are reversed. This fits nicely in the notion of duality as known in category
theory. In terms of category theory, the two representations are the following dual categories:

• The SQL representation is the category having “entity instances with keys” as objects
and “foreign keys determined by relation r (used from C to P)” as arrows.

• The OO representation is the category having “entity instances with oid’s” as objects
and “object references determined by relation r (used from P to C )” as arrows.

If in the ERD instantiation all of aaa, . . . , eee are flat scalar values, then the OO repre-
sentation is —according to Meijer— just the Amazon SimpleDB data model. If in the ERD
instantiation all of aaa, . . . , eee are blobs, then —according to Meijer, but I have my doubts—
the OO representation is just the HTML5 key-value storage model. Thus, the dual of the
traditional SQL representation turns out to be practically useful.

Many concepts from mathematics, physics, and computer science are related to each other
by categorical duality. Almost always, dualization of a useful concept yields a useful concept
again. The appendix (page 7) illustrates this phenomenon.
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6 Indexing. In §2 we have observed that in the SQL representation the retrieval of all rows
with a given key value is expensive, whereas in the OO representation cheap dereferences of
oid’s suffice. To “repair” this sad affairs in the SQL representation, the SQL programmer
may create an index (and for primary keys this is often done automatically by the DBMS):

index on C

value rid

d δ
e ǫ

α a aaa . . . oo // δ d ddd . . . index on P

value rid

a α
b β
c γ

β b bbb . . . oo

(a, d)

(a, e)
(b, e)

jjTTTTTTT //
// ǫ e eee . . .

γ c ccc . . .

Each index gives, for each value v the row id (denoted with α, β, . . .) of the row having that
value v . A row id provides direct access to a row; it is semantically the same as an object id.
Row id’s are not expressible by the SQL programmer, but are exploited in query executions.

If we draw the lines from each applied occurrence of a row id to its unique defining
occurrence, we see that the index actually restores the information that is already present in
the OO representation! This is even more clear if we replicate the relevant part of the index
in each row:

α a aaa . . .
index
d δ
e ǫ

//oo

ll

YYYYYYYYYYYYYYYY

,,YYYYYYYYYYYYYYYY
oo // δ d ddd . . . index

a α

β b bbb . . . index
e ǫ //oo

(a, d)

(a, e)
(b, e)oo //

iiSSSSSSSSS
// ǫ e eee . . .

index
a α
b β

γ c ccc . . . index

The drawing is a little clearer if we omit the middle part (the link table):

α a aaa . . .
index
d δ
e ǫ

//oo

ll

YYYYYYYYYYYYYYYY

,,YYYYYYYYYYYYYYYY
δ d ddd . . . index

a α

β b bbb . . . index
e ǫ //oo ǫ e eee . . .

index
a α
b β

γ c ccc . . . index

7 Compositionality. Consider the query that yields “all combinations of P instances and
C instances that are related via relation r”. In the SQL representation, the result looks like
this:

a aaa . . . d ddd . . .

a aaa . . . e eee . . .

b bbb . . . e eee . . .

4



It turns out that the result of the query is not normalized: both aaa and eee is duplicated.
The result itself is not an acceptable representation. Thus we see that SQL manipulations
may lead us outside the SQL framework: SQL is not compositional. In the OO representation,
the query result consists of the collection of objects identified by α, β, δ, ǫ:

α a aaa . . . , {δ, ǫ} δ d ddd . . . , {α}

β b bbb . . . , {ǫ} ǫ e eee . . . , {α, β}

There is full sharing and no duplication: each object “contains” other objects by referencing
them by their oid’s.

8 Comprehension. I assume that list comprehension, filter p⊳, map f∗, and reduce ⊕/
are well-known from functional programming. List comprehensions can be easily expressed
in maps, reduces, and filters:

[f x | x ← xs; p x ] = f∗ · p⊳ . xs

[g x | x ← xs; p x ; y ← f x ; q y ] = g∗ · q⊳ ·++/ · f∗ · p⊳ . xs

[h x | x ← xs; p x ; y ← f x ; q y ; z ← g y ; r z ] = h∗ · r⊳ ·++/ · g∗ · q⊳ ·++/ · f∗ · p⊳ . xs

In fact, SQL’s select-from-where expression is a simple comprehension in disguise:

select expr from R r , S s, T t where cond = [expr | (r , s, t)← R × S × T ; cond ]

This can also be done for the group-by construct [2]. Since filter itself can be expressed in
maps and reduces, and since maps and reduces exist for a large class of inductively defined
datatypes [5], it follows that comprehension exists for a large class of inductively defined
datatypes. In particular, select-from-where expressions or more complicated comprehensions
can also be used for the OO representation: no new query languages or query concepts have
to be invented.

9 ACID vs BASE. In the SQL representation, the programmer can manipulate (cre-
ate, change) keys, whereas in the OO representation, the programmer cannot manipulate
(create, change) oid’s. As a consequence, SQL manipulations might violate referential in-
tegrity (which is the property that key values are unique in a table and foreign key values

do occur in the referenced table as key values), whereas OO manipulations cannot introduce
non-existent objects. Thus, in the SQL representation, manipulations must be checked (by
the consistency checks of transactions updating multiple rows as one atomic action), whereas
in the OO representation, manipulations can be done for individual objects separately, and
the representation is consistent only eventually after all individual updates. In other words,
the SQL representation calls for an ACID environment whereas the OO representation calls
for a BASE environment. (BASE abbreviates Basically Available, Soft-state, Eventually con-

sistent. The acronym is a bit contrived —and so is ACID— but has a nice symmetry with
ACID).

Notice that in the special case, in the SQL representation deletion of C rows cannot cause
dangling references whereas in the OO representation this holds for deletion of P objects.
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10 Closed vs open world assumption. Since in the SQL representation multiple changes
are done and checked in atomic transactions, see §9, a programmer using the SQL representa-
tion can safely adopt the closed world assumption (“if a fact is not represented, then it is not
true”). Since in the OO representation consistency might be realized only eventually, see §9, a
programmer using the OO representation had better adopt the open world assumption (“even
if a fact is not represented, it might be true — and be represented later”).

Adoption of the open world assumption severely limits the interpretation of the answers
to some queries.

11 Scalability and distribution. Typically, but not necessarily, the SQL representation
is used in an ACID environment (see §9) and, because referential integrity checking would be
rather infeasible for distributed data, the data is not distributed. It follows that in such an
environment query optimization can use all statistics of the data, and users can focus on the
what rather than the how. Typically, but not necessarily, the OO representation is used in a
BASE environment (see §9) and, because validity checking of object references is relaxed, the
data can be and is distributed. (Since object references might be invalid, the programmer
must be prepared to get a “not found - 404” error in query answers.) It follows that in such an
environment query optimization is hard to automate, and users will generally rely on patterns
like MapReduce that can be efficiently executed on the distributed data.

12 Object-Relational mapping. Meijer mentions the concept of Object-Relational map-
ping, and gives an example with LINQ syntax. He observes that, for a given ERD instantia-
tion, the OO representation needed for the OR mapping (in order to produce a correct SQL
representation) is more complicated than the direct OO representation of the ERD instanti-
ation. (Alas, I see no duality here. . . or should we think of a Relation-to-Object mapping?)
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Appendix – Explanation of categorical duality

Category. A category consists of objects and arrows (sometimes called morphisms), to-
gether with a binary operation on arrows, called composition (denoted as an infix dot: · ).
Moreover, these objects, arrows and composition must fulfil some properties, called axioms.
One of these axioms is that each object a has an arrow ida : a → a that, under composition,
behaves as an identity. The other axioms are so natural that we don’t explicate them here.
Here is a little category with objects a, b, c and eight arrows (the three identities, and f , g , h,
and all compositions of these; note that f · id = f and so on):

b
h

��

id

��

aid 99

f 00

g

88

h·f

$$h·g ((
c idee

All categorical theory is expressed in terms of objects, arrows, and composition. However,
the interpretation is up to the user. Every property of the intended interpretation that the
user has in mind, can only be used and exploited in the categorical theory if the property
can be expressed in terms of the objects, arrows and composition. To do so may take some
ingenuity; for example, how would you express categorically the concepts of “maximum of
two numbers” or “Cartesian product of two sets” or “conjunction of two propositions”? We
shall do it in a moment.

Example categories. Here are a few examples of mathematical concepts that can be rep-
resented categorically. First, graphs can be described categorically by representing nodes as
objects, paths as arrows, and path concatenation as arrow composition. Second, some as-
pects of set theory can be described categorically by representing sets as objects, functions
as arrows, and function composition as arrow composition. Third, some aspects of number
theory can be described categorically by representing numbers as objects, pairs (m,n) with
m ≤ n as arrows, and transitivity of ≤ as arrow composition; (in this category there is ex-
actly one arrow between two numbers m and n, so that in a picture the arrows can be left
unnamed). Fourth, some aspects of propositional logic can be described categorically by rep-
resenting propositions as object, implications as arrows, and the rule of transitivity as arrow
composition; (in this category there is exactly one arrow between two propositions, so that
in a picture the arrows can be left unnamed). What’s the usefulness of all this? Well, there
might be some categorical concepts and theorems that, interpreted in these examples, might
give useful concepts and theorems. We shall see so in a moment.

A little theory. Here is a little example of some category theory: two definitions and
three theorems. First, define that two objects a and b are isomorphic if:- there exist arrows
φ : a → b and ψ : b → a such that φ·ψ = idb and ψ·φ = ida . We then have the following meta-
theorem: suppose that a and b are isomorphic via φ and ψ; then all definitions and theorems
of category theory remain valid and true, respectively, if occurrences of f

→a
g
→ are replaced by

φ·f
→ b

g·ψ
→ . Thus, isomorphic objects cannot be distinguished categorically. For example, in the

above mentioned category of sets, all sets with the same cardinality are isomorphic. If you
do want to distinguish equally sized sets, then you should not consider the above category of
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sets but another one which better reflects your intention. The other definition and theorems
read as follows. Consider three objects a, b, c and two arrows a

f
← c

g
→ b. We define that c

with f , g is a “product of a and b” if:-

for every a
f ′

← d
g ′

→ b, there exists precisely one h : d → c with f ′ = f · h and g ′ = g · h.

The objects and arrows involved in this definition may be drawn as follows:

d
f ′

����
��

��
�� g ′

��>
>>

>>
>>

h
��

a c
f

oo
g

// b

the required equalities are:
f ′ = f · h
g ′ = g · h

As a theorem one can now (easily) prove that if c1 with f1, g1 is also a product of a and b, then
c and c1 are isomorphic; so we can speak of “the” product rather than “a” product. Also, one
can (easily) prove that “product” is associative: the product of a and the product-of-b-and-c
is isomorphic to the product of the product-of-a-and-b and c.

Interpretation. Interpreted in classical set theory, ‘the categorical product of sets a and b’
is the “Cartesian product of a and b, with the accompanying projection functions”:

d
f ′

||yy
yy

yy
yy

y
g ′

""DD
DD

DD
DD

D

h
��

a a × b
exl

oo
exr

// b

exl extracts the left component
exr extracts right component

Interpreted in the category that represents the ordering on natural numbers, ‘the categorical
product of numbers a and b’ is the “maximum of numbers a and b”:

d

zzuuuuuuuuuuu

$$IIIIIIIIIII

��
a max(a, b)oo // b

x
↓
y

means x ≥ y

Interpreted in the category of propositions, ‘the categorical product of propositions a and b’
is the “conjunction of a and b”:

d

||yy
yy

yy
yy

y

""EE
EE

EE
EE

E

��
a a ∧ boo // b

x
↓
y

means x ⇒ y

Thus, many similar phenomena in different branches of mathematics turn out to have the
same characterization in category theory. And. . . , the single categorical proof of the associa-
tivity of these concepts is valid for all three interpretations (all interpretations, indeed).
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Dualization. Dualization is a syntactic manipulation on expressions of category theory; it
systematically reverses the arrows. One can (easily) prove that dualization preserves well-
formedness of definitions and the truth of categorical proofs/theorems. Dualization gives “two
for the price of one”. The dual of a concept xxx is often called co-xxx .

As an example we dualize the concept of “product of a and b” which we call “sum of a
and b” (or alternatively: “co-product of a and b”). Consider three objects a, b, c and two
arrows a

f
→ c

g
← b. We define that c with f , g is a “sum of a and b” if:-

for every a
f ′

→ d
g ′

← b, there exists precisely one h : d ← c with f ′ = h · f and g ′ = h · g :

a c//
f

oo
g

b

d
��f ′

>>>>>>>> �� g ′

���������
h

the required equalities are
f ′ = h · f
g ′ = h · g

Because dualization preserves categorical proof, it immediately follows, without further proof,
that different sums of two objects are isomorphic and we can speak of “the” sum rather than
“a” sum, and it follows that sum is associative.

Interpretation. Interpreted in classical set theory, ‘the categorical sum of sets a and b’ is the
“disjoint union of a and b, with the accompanying injection functions”:

a a + b ooinl//inr
b

d
|| g ′

zzzzzzzzz""f ′

EEEEEEEEE ��
h

inl injects into the left
inr injects into the right

Interpreted in the category that represents the ordering on natural numbers, ‘the categorical
sum of numbers a and b’ is the “minimum of a and b”:

a min(a, b) oo// b

d
zz

vvvvvvvvvvv$$

HHHHHHHHHHH ��

x
↓
y

means x ≥ y

Interpreted in the category of propositions, ‘the categorical sum of propositions a and b’ is
the “disjunction of a and b”:

a a ∨ b oo// b

d
||

yyyyyyyyy""

EEEEEEEEE ��

x
↓
y

means x ⇒ y

These examples illustrate that dualization of useful concepts gives concepts that –often– are
useful too. Dualizing SQL to coSQL is another example.

Further reading. Elsewhere [4] I give a more elaborate categorical treatment of Cartesian
product and disjoint union, showing that the categorical definition “really abstracts from
implementation”.

Appendix A of my PhD thesis [3] gives in seven pages a self-contained introduction with
precise definitions of important notions of category theory, including functors, natural trans-
formations, dualization, isomorphism. See also Category_theory in Wikipedia [7].
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