
Cost and feasibility estimations of an execution plan

Maarten Fokkinga

Version of December 9, 2011, 9:02

Abstract. The explanation by Kifer [1] for calculating the total cost and amount
of buffers of a query execution plan (is elegant, clear, well-phrased, correct, in-
structive and so on, but) does not take care of pipelining and the available buffers
in a systematic way, and, instead, needs ad hoc reasoning for these aspects. We
show a method that is systematic, easily to be automated, and needs no ad hoc

reasoning when applied.

1 Goal. An execution plan consists of a relational algebra expression, in tree form, together
with an access path for each node in the tree, an estimation of the total cost of producing
the end result, and the amount of buffers that are simultaneously used during the production
of the end result. The total cost is often the main point of interest, the amount of buffers
determines whether the plan is feasible in view of the number of available buffers. We shall
show how to calculate total cost and amount of buffers in a systematic way, easily to be
automated.

We follow the method of Kifer [1] as much as possible (and assume that the reader is
familiar with his exposition) and expand his approach, and deviate from it, only in order
to be systematic. In particular, pipelining and the amount of buffers is dealt with in the
formulas and needs no ad hoc explanation anymore.

2 Problem and solution. Let us explain the problem and our solution by means of a
single example: the block-nested loop with M input buffers for the outer argument. Denoting
the size of a table or relation R by FR (being a number of pages), Kifer [1] says that the entire
outer argument is read in Fouter/M chunks of M pages at a total cost of Fouter page fetches,
and for each chunk the entire inner argument is read at the cost of Finner (putting the join
of the chunk with inner in the output buffer); making together Fouter + ⌈Fouter/M ⌉ × Finner

page fetches. However, if the outer argument is pipelined into the block-nested loop, then in
the cost formula the first occurrence of Fouter should be replaced by 0 whereas the second one
stays unaffected. In addition, to express the total, overall cost of the join result, the costs of
producing the arguments should also be taken into account. To avoid ad hoc manipulation of
the cost formula, we formulate the cost of the block-nested loop using Iouter and Fouter , where
Iouter stands for the cost of “input” of the outer argument and Fouter for its size. The usage of
the formula in an execution plan can then be specialized to “pipelining the outer argument”
by substituting ‘the cost of producing the outer argument’ for all all occurrences of Iouter , and
be specialized to “reading outer from disk” by both substituting Fouter for all occurrences of
Iouter and adding ‘the cost of producing and materializing the outer argument’.

1



Pipelining is a technique that may save a lot of page transfers (in comparison to writing
intermediate results to disk and later reading them from disk). However, it has its price too:
the usage of buffers—of which there is only a limited amount. So, we must also carefully
formulate the usage of buffers, and take account of the fact that pipelining an argument to
an operation has as consequence that both the production of the argument and the operation
are executed simultaneously, using the same pool of buffers.

Before we can describe this method in detail, in §4, first a careful definition of the relevant
concepts is needed.

3 Basic concepts. Following Kifer [1], we measure the cost of executing a plan in the
number of page transfers, without distinguishing between sequential page access and random
page access. The size of a table or relation R is measured in number of tuples, TR, and in
number of pages, FR. Recall that tables may be base tables, already stored on disk, and
computed tables, such as the result of nodes in the execution plan. Further, the following
notions are crucial for the systematization.

• Production of a table is:-

a computation that puts the table rows into the output buffer ; the page transfers
for flushing the output buffer to disk are not part of this computation and not
counted in the production cost. In fact, sometimes the output buffer is not flushed
to disk, namely when its content is pipelined to the parent node.

Materialization of a table is:-

a computation such that upon completion the table rows are stored on disk. For
a table that is already stored on disk, this computation may be a noop. For a
computed table this computation is: producing the table and writing it to disk;
the page transfers for writing-to-disk are included in the computation and are
counted in the materialization cost.

For a computed table, the cost of writing it eventually to disk is the same for all execution
plans for a given query and therefore it is not needed for determining the cheapest plan.
So primarily we are interested in production costs. However, in subcomputations of
intermediate results both production and materialisations may play a role.

• Pipelining of a child node to its parent node is:-

taking the “child’s output buffer” and the “parent’s buffer for inputing the child’s
result” to be one and the same buffer. The operation of “flushing the output buffer”
in the child is synchronized with “emptying the corresponding input buffer” at the
parent.

Thus pipelining avoids materialization and may save page transfers. Pipelining has as
consequence that the production of the child’s result is done simultaneously with the
operation of the parent thus affecting ‘the buffers simultaneously in use’.

Footnote. If an access path uses several buffers to input the result of a child, C say, then
pipelining child C to its parent means that the output buffer of C is identified successively with
each of the input buffers in the parent. This successive identification might be done over and
over again, if the access path uses an iteration to input the C ’s result; see node (5) in Example 3
below.

• The amount of buffers simultaneously used in a computation is:-

2



the minimum number of buffers with which the computation can be done, excluding
the single output buffer – if any.

It is not formally necessary to exclude the output buffer, but it is handy for two reasons:
first, every access paths has exactly one output buffer (so there is nothing wrong with
excluding it systematically), and second, in the case of pipelining the output buffer need
not be counted separately since it is at the same time an input buffer.

• Buffer. We consistently use the word buffer as a synonym for buffer page. So, instead
of talking about “an input buffer of n pages” we’ll talk about “n input buffers”.

Pipelining notation. In an expression tree, a line marked with denotes that the child’s
result eventually resides on disk, whereas a line marked with denotes pipelining of the
child’s output to the parent’s input (equating the child’s output buffer with the parent’s
input buffers):

P

}}
}}

C1’s result is on disk (and might be read by P) →
}}

}}
AA

AA

← output of C2 is pipelined to P
AA

AA

C1 C2

4 The method. In the tree we enumerate the children of a node in a fixed (left to right)
order by 1, 2, . . .. We assume that for each node N the following is known:

• piped/stored :- the numbers of the children of which the result is pipelined into N ’s
operation and stored on disk, respectively.

• C :- the operation cost of producing N ’s result expressed in terms of the argument
sizes Ti ,Fi and the costs Ii of inputing the arguments, for various child nodes i .

• B :- the number of buffers used internally for N ’s operation and input of arguments.

This information is, in fact, part of the access path at node N . Section §5 elaborates these
data for several access paths.

Method. The method is to calculate in a bottom-up way, or to verify in arbitrary order,
for each node N these three quantities:

• TN ,FN :- an estimation of the size of the result, measured in rows and pages, respectively,

•

{

PN :- an estimation of the cost of producing N ’s result, if N is pipelined to its parent,
MN :- an estimation of the cost of materializing N ’s result, if N is not pipelined

• BN :- a lowerbound for the amount of buffers that are simultaneously used during the
production of N ’s result (excluding the output buffer).

The calculation and verification of the result sizes is independent of the access paths and is
beyond the scope of this note. The other quantities are fully determined, for a node N with
children N1,N2, . . . and access path info C and B , by these equations:

• For a leaf node N :

BN = B

PN = FN

MN = 0

3



• For a non-leaf node N :

BN = the maximum of B +
∑

i∈piped BNi
and all BNi

(for i ∈ stored)

= max ({B +
∑

i∈piped BNi
} ∪ {i ∈ stored • BNi

})

PN = C ′ +
∑

i∈stored Mi

MN = PN + FN

where C ′ is obtained from expression C by the following substitution, for all children i :

Ii :=

{

Pi if i ∈ piped

Fi if i ∈ stored

Example. Here is a typical application of “the method” for a non-leaf node. Consider the
following fragment of an execution plan, in which the result of (1) resides on disk (whether
because it is a base table or because it is produced and explicitly stored) and the result of (2)
(whether residing on disk or explicitly produced) is pipelined to (3):

(3)
{

access path 3

{{
{{

{{
{{

DD
DD

DD
DDsize: f1 pages = t1 tuples

access path 1
Pcost: p1, Mcost: m1

buffer need: b1















(1) (2)















size: f2 pages = t2 tuples
access path 2
Pcost: p2, Mcost: m2

buffer need: b2

Calculation and verification of size estimations are independent of the access paths and beyond
the scope of the method, so we just assume that sizes T(3) and F(3) are given. Now suppose
that node (3) is computed by an access path with local buffer need B and local cost estimation
formula C . The overall costs P(3) and M(3) for producing and materializing, respectively, the
result of (3), and the total amount B(3) of buffers needed during the production (thus excluding
the overall output buffer) of the result of node (3), are then calculated as follows:

B(3) = max{B + b2, b1}

P(3) = C [I1 := f1, I2 := p2] + m1

M(3) = P(3) + f3

Proof. A formal proof of the correctness of the proposed method would be based on concrete
algorithms that execute the plan. The formulation of these algorithms and, hence, a formal
correctness proof is beyond the scope of our exposition. Instead, we provide an informal proof
(which may be skipped without loss of continuity), in which we suggest to some degree how
the algorithms look like, and in which we count on some imagination of the reader.

• Leaf node. The equations for a leaf node are obvious.

• Non-leaf node, eqn for BN . A child whose result is pipelined into node N is executed simultaneously
with the operation of N (because the output buffer in the child is identified with an input buffer in
N ’s operation, and “flushing the output buffer” in a child and “emptying the corresponding input
buffer” in N ’s operation are synchronized). The access path says that the operation in node N itself

4



uses B buffers. So, in order to produce N ’s result, its pipelined children need to produce their result
simultaneously, and hence B +

∑

i∈piped
BNi might be the amount of buffers used at some time during

the overall production. But this is not the whole story. The execution of a child whose result is stored on
disk, need be completed before N ’s operation ends, and can be executed entirely before N ’s operation.
If such a child needs more buffers than B +

∑

i∈piped
BNi , then certainly that amount of buffers is needed

in order to produce N ’s result.

• Non-leaf node, eqn for PN . The cost estimation C of the access path is expressed, amongst others,
in terms of “the cost of inputing the result of child i”, denoted Ii . For a child i whose result resides on
disk, this input costs Fi page fetches, hence Ii is replaced in C by Fi in order to form PN ; in addition
the cost of materializing child i ’s result has to be added, as done in the term

∑

i∈stored
Mi . For a child i

that is pipelined to N , the input of the child’s result from its output buffer to N ’s input buffer comes
for free, but for each such input the child has to produce its result; this is reflected in the substitution
of Ii by Pi in C in order to form PN .

• Non-leaf node, eqn for MN . Materialization differs from production only in that the final result is
flushed from the output buffer to disk, thus costing an additional amount of FN page transfers.

The method is illustrated concretely in a series of elaborated examples in §6. First we need
to formally define the info of the access paths.

5 Access paths. The access paths are characterized by the following formula’s.

• Noop. A noop does nothing; it makes sense and may be applied only if its argument
is already stored on disk. Pipelining the result cannot be done, since the result is not
produced in the output buffer.
B = 0, C = 0.

• Sequential scan with optional filter. It needs only one buffer: this one is the input
buffer and the output buffer at the same time, so that “the buffers in use during the
production” is zero (the output buffer is not counted!). The cost is: the cost of inputing
the argument. The optional filter determines which rows are removed from the buffer.
B = 0, C = I1.

• Merge join with N1 +N2 ≥ 2 input buffers. A merge join expects both arguments to be
sorted on the join key. The merge operation inputs the arguments in N1 and N2 buffers,
respectively, and, for each filling of the buffers, looks for matching pairs of rows and,
for each matching pair, it puts their join into the output buffer. This approach assumes
that for each value v of the join key, the entire set σjoin key=vargumenti fits in Ni pages.
B = N1 + N2, C = I1 + I2.

• Explicit sorting with N auxiliary buffers. (As a relational algebra operation, sorting is
the identity since the sets of input tuples and output tuples are the same.) Sorting a
file of size F with external sorting using N buffers, excluding the output buffer, costs
about 2F⌈logN F⌉ page transfers. Initially the file is read from disk and eventually the
file sits on disk. So, to cater for pipelining the input from the child node and pipelining
the output to the parent node, 2F page transfers must be subtracted and, instead, the
term I (for inputing the file) must be added.
B = N , C = I1 + 2F1⌈logN F1⌉ − 2F1.

It follows that if N ≥ F , the sorting can be done entirely in-memory without page transfers.

5



• Sort-merge join. A sort-merge join can be expressed in the relational algebra tree as
explicit sort operations on the children separately, followed by a merge join.
It follows that if the sort nodes use N1 and N2 buffers (excluding the two output buffers),
respectively, and are pipelined to the merge node having N input buffers, then the cost
formula for these three nodes together is:
B = N + N1 + N2, C = I1 + 2F1⌈logN1

F1⌉ − 2F1 + I2 + 2F2⌈logN2
F2⌉ − 2F2.

• Optimized sort-merge join using N1 + N2 ≥ 2 buffers. According to Kifer’s explana-
tion [1, Section 10.5.2], this operation sorts the arguments in parallel, using N1 and N2

buffers, respectively, (excluding the output buffer), and combines the final merge step
of the sorting with the merge step of the join. This approach assumes that for each
value v of the join key, the entire set σjoin key=vargumenti fits in Ni pages.
B = N1 + N2, C = I1 + 2F1⌈logN1

F1⌉ − 2F1 + I2 + 2F2⌈logN2
F2⌉ − 2F2.

Footnote. The ‘sort-merge join with pipelining’ and the optimized sort-merge join have exactly
the same cost formula, but the latter needs less buffers. When they have the same amount of
buffers, the optimized merge join can indeed do its job with less page transfers.

• Block-nested loop with N buffers for inputing outer. Per iteration, it reads N pages of
the outer argument into N buffers, and looks for matching rows in the inner argument
by inputing it page by page; for each pair of matching rows the join is put into the
output buffer.
B = N + 1, C = Iouter + ⌈Fouter/N ⌉ × Iinner .

• Index-nested loop. An index-nested loop inputs its outer argument page by page (using
one buffer), and for each of the rows it uses the index on the inner argument to look
up the matching rows; for this latter look-up one buffer is needed, since reads from disk
can only be done page-wise. For each matching pair it immediately produces a join row
in the output buffer.
B = 2, C = Iouter + Touter × (ρ + µ)
where

ρ is 2–4 for a B+ tree and 1.2 for a hash index
(i.e., the average, per tuple of outer , of the cost to get the first index entry),

and, if the index is unclustered:
µ is the average, per tuple of outer , of the number of matching tuples in inner

but no more than Finner ,
but, if the index is clustered:

µ is the average, per tuple of outer , of the number of (adjacent!) inner pages
containing matching tuples (in practice, 1 or 2 pages).

6 Concrete examples. The examples use table Prof , Teaching , Transcript , and concern
this relational algebra expression, in tree form:

6



size: 400r=10p

(6) ⊲⊳
id=id

size: 10r=1p

kkkkkkkkkkkkkkkkk

size: 20 000r=283p
PPPPPPPPPPPPP

(2) σdept=CS

size: 500r=5p

(5) ⊲⊳
cc=cc

sem=sem

size: 1000r=7p

nnnnnnnnnnnn
size: 20 000r=150p

PPPPPPPPPPPP

(1) Prof (3) Teaching (4) Transcript

Calculation and verification of size estimations are independent of the access paths and beyond
the scope of the method, so the figures in the tree should be taken for granted. We present a
series of examples, all having the tree above but with varying access paths at the nodes.

Example 1. A 1-buffer block-nested loop for (6) and a 2-buffer merge join for (5), assuming
both Teaching and Transcript are sorted on (cc, sem), and all results are pipelined to their
parent nodes. Here is the plan:

size: 400r=10p

(6) ⊲⊳
id=id block-nested loop (1 iteration), Pcost: 162, buffers: 4

ppppppppppp

size: 10r=1p

outer

ppppppppppp
AA

AA
AA

A
inner

size: 20 000r=283p
AA

AA
AA

A

(2) σdept=CS







seq scan
Pcost: 5
buffers: 0

size: 500r=5p

(5) ⊲⊳
cc=cc

sem=sem
2-buffer merge join, Pcost: 157, buffers: 2

}}
}}

}}
}

size: 1000r=7p

}}
}}

}}
}

BB
BB

BB
B

size: 20 000r=150p

BB
BB

BB
BB

(1) Prof







seq scan
Pcost: 5
buffers: 0

(3) Teaching







seq scan
Pcost: 7
buffers: 0

(4) Transcript







seq scan
Pcost: 150
buffers: 0

Verification of the cost estimations and buffer counts:

(1) For a sequential scan, we have B = 0 and C = I1.
This node is a leaf node, so:
B(1) = B = 0.
P(1) = F(1) = 5.

(2) For a sequential scan, we have B = 0 and C = I1.
For this node, child 1 is (1), and piped(2) = {(1)} and stored(2) = �, so:
B(2) = max{B + B(1)} = 0 + 0 = 0.
P(2) = C [I1 := P(1)] = P(1) = 5.

7



(3,4) Similarly to (1).

(5) For a 2-buffer merge join, we have B = 2 and C = I1 + I2.
Here, child 1 is (3), child 2 is (4), and piped(5) = {(3), (4)} and stored(5) = �, so:
B(5) = max{B + B(3) + B(4)} = 2 + 0 + 0 = 2.
P(5) = C [I1 := P(3), I2 := P(4)] = 7 + 150 = 157.

(6) For a block-nested loop with N=1 buffers for inputing outer , we have B = N + 1 and
C = Iouter + ⌈Fouter/N ⌉ × Iinner .
Here, outer = (2) and inner = (5) and piped(6) = {(2), (5)} and stored(6) = �, so:

B(6) = max{B + B(2) + B(5)} = 2 + 0 + 2 = 4.

P(6) = C [I1:=P(2), I2:=P(5)]

= P(2) + ⌈F(2)/N ⌉ × P(5)

= 5 + ⌈1/1⌉ × 157
= 5 + 157
= 162.

Example 2. A small change in the previous plan, without affecting the total cost: a noop
on Prof , keeping it materialized on disk, followed by reading it from disk in (2). Here is the
plan:

size: 10r=1p

ooooooooooooooooooo

(2) σdept=CS







seq scan
Pcost: 5
buffers: 0

size: 500r=5p

(1) Prof







noop
Mcost: 0
buffers: 0

Verification:

(1) For a noop, we have B = 0 and C = 0, and pipelining the result is not allowed.
This node is a leaf node, so:
B(1) = B = 0.
M(1) = 0.

(2) For a sequential scan, we have B = 0 and C = I1.
For this node, child 1 is (1), and piped(2) = � and stored(2) = {(1)}, so:

B(2) = max{B , B(1)} = max{0, 0} = 0.

P(2) = C [I1 := F(1)] + M(1)

= F(1) + M(1)

= 5 + 0
= 5.

8



Example 3. A block-nested loop with one iteration at both node (5) (using 8 internal
buffers) and node (6) (using 2 internal buffers). The result of (5) is stored on disk so that
the total number of buffers simultaneously used during the production, including the output
buffer, does not exceed 10 (in contrast to forthcoming cheaper plan in Example 4). Here is
the plan:

size: 10p

(6) ⊲⊳
id=id block-nested loop (1 iteration), Pcost: 728, buffers: 8

vv
vv

vv
vouter

size: 1p vv
vv

v
FF

FF
FF

F inner

size: 283pFFFFFF

(2)
Pcost: 5
buffers: 0

(5) ⊲⊳
cc=cc

sem=sem







block-nested loop (1 iteration)
Mcost: 157+283=440
buffers: 8

{{
{{

{{
{outer

size: 7p
{{

{{
{

DD
DD

DD
D inner

size: 150p
DD

DD
D

(3)
Pcost: 7
buffers: 0

(4)
Pcost: 150
buffers: 0

Verification:

(5) For a block-nested loop with N=7 buffers for inputing outer , we have B = N + 1 and
C = Iouter + ⌈Fouter/N ⌉ × Iinner .
Here, child outer is (3) and inner is (4), and piped(5) = {(3), (4)} and stored(5) = �, so:

B(5) = max{B + B(3) + B(4)} = (7 + 1) + 0 + 0 = 8.

M(5) = C [I1 := P(3), I2 := P(4)] + F(5)

= (P(3) + ⌈F(3)/7⌉ × P(4)) + F(5)

= (7 + ⌈7/7⌉ × 150) + 283
= 440.

Note. Pipelining (3) into (5) means that the output buffer of (3) is identified successively
with the seven left-input buffers of (5).

(6) For a block-nested loop with N=1 buffers for inputing outer , we have B = N + 1 and
C = Iouter + ⌈Fouter/N ⌉ × Iinner .
Here, child outer is (2) and inner is (5), and piped = {(2)} and stored = {(5)}, so:
B(6) = max{B + B(2), B(5)} = max{(N + 1) + 0, 8} = max{2, 8} = 8.

P(6) = C [I1 := P(2), I2 := F(5)] + M(5)

= (P(2) + ⌈F(2)/N ⌉ × F(5)) + M(5)

= (5 + ⌈1/1⌉ × 283) + 440
= 728.

Example 4. In the previous plan the access path at node (5) uses 8 buffers, and this node
can only be pipelined to (6) (with a decrease of 2× 283 in the cost) if the number of available
buffers including the overall output buffer is at least 11. Here is the plan:

9



size: 10p

(6) ⊲⊳
id=id block-nested loop (1 iteration), Pcost: 162, buffers: 10

vv
vv

vv
vouter

size: 1p vv
vv

v
FFFFFF inner

size: 283pFF
FF

FF

(2)
Pcost: 5
buffers: 0

(5) ⊲⊳
cc=cc

sem=sem







block-nested loop (1 iteration)
Pcost: 157
buffers: 8

{{
{{

{{
{outer

size: 7p
{{

{{
{

DD
DD

DD
D inner

size: 150p
DD

DD
D

(3)
Pcost: 7
buffers: 0

(4)
Pcost: 150
buffers: 0

Verification:

(5) For a block-nested loop with N=7 buffers for inputing outer , we have B = N + 1 and
C = Iouter + ⌈Fouter/N ⌉ × Iinner .
Here, outer is (3) and inner is (4), and piped(5) = {(3), (4)} and stored(5) = �, so:

B(5) = max{B + B(3) + B(4)} = (7 + 1) + 0 + 0 = 8.

P(5) = C [I1 := P(3), I2 := P(4)]

= P(3) + ⌈F(3)/N ⌉ × P(4)

= 7 + ⌈7/7⌉ × 150
= 157.

(6) For a block-nested loop with N=1 buffers for inputing outer , we have B = N + 1 and
C = Iouter + ⌈Fouter/N ⌉ × Iinner .
Here, outer is (2) and inner is (5), and piped(6) = {(2), (5)} and stored(6) = �, so:

B(6) = max{B + B(2) + B(5)} = (N + 1) + 0 + 8 = 10.

P(6) = C [I1:=P(2), I2:=P(5)]

= P(2) + ⌈F(2)/N ⌉ × P(5)

= 5 + ⌈1/1⌉ × 157
= 162.

Example 5. If the number of available buffers including the overall output buffer is 10, and
we still want to pipeline (5) to (6), then the block-nested loop of (5) can use only 7 buffers
which is too few in order to do its work in one iteration:

10



size: 10p

(6) ⊲⊳
id=id block-nested loop (1 iteration), Pcost: 312, buffers: 9

vv
vv

vv
vouter

size: 1p vv
vv

v
FFFFFF inner

size: 283pFF
FF

FF

(2)
Pcost: 5
buffers: 0

(5) ⊲⊳
cc=cc

sem=sem







block-nested loop (2 iterations)
Pcost: 307
buffers: 7

{{
{{

{{
{outer

size: 7p
{{

{{
{

DD
DD

DD
D inner

size: 150p
DD

DD
D

(3)
Pcost: 7
buffers: 0

(4)
Pcost: 150
buffers: 0

Verification:

(5) For a block-nested loop with N=6 buffers for inputing outer , we have B = N + 1 and
C = Iouter + ⌈Fouter/N ⌉ × Iinner .
Here, child outer is (3) and inner is (4), and piped(5) = {(3), (4)} and stored(5) = �, so:

B(5) = max{B + B(3) + B(4)} = (6 + 1) + 0 + 0 = 7.

P(5) = C [I1:=P(3), I2:=P(4)]

= P(3) + ⌈F(3)/6⌉ × P(4)

= 7 + ⌈7/6⌉ × 150
= 7 + 2 × 150
= 307.

(6) For a block-nested loop with N=1 buffers for inputing outer , we have B = N + 1 and
C = Iouter + ⌈Fouter/N ⌉ × Iinner .
Here, child outer is (2) and inner is (5), and piped(6) = {(2), (5)} and stored(6) = �, so:

B(6) = max{B + B(2) + B(5)} = (1 + 1) + 0 + 7 = 9.

P(6) = C [I1:=P(2), I2:=P(5)]

= P(2) + ⌈F(2)/1⌉ × P(5)

= 5 + ⌈1/1⌉ × 307
= 5 + 1 × 307
= 312.

Example 6. Here is a quite different plan: an index-nested loop for node (6), taking node (5)
as outer thus retrieving rows of node (1) by index look-up using a hash index idx on Prof for
search key (id). Note that in fact we are changing the tree, because the index is not defined
on the result of σdept=CSProf but only on Prof itself; the selection is pushed up to work on
the result of node (6). Pipelining (6) into the new selection node (2′) means that still the
selection itself is for free! Here is the plan:

11



size: 400r=10p

(2′) σdept=CS seq scan, Pcost: 44 157, buffers: 2+b

size: 20 000r

(6) ⊲⊳
id=id idx-nested loop using idx , Pcost: 44 157, buffers: 2+b

}}
}}

}}
inner

size: 1p
}}

}}
}}

??
??

?? outer

size: 20 000r=283p??
??

?

(1)(1) Prof







noop
Mcost: 0
buffers: 0

(5)
Pcost: 157
buffers: b

Verification:

(1) For a noop, we have B = 0 and C = 0, and pipelining the result is not allowed.
This node is a leaf node, so:
B(1) = B = 0.
M(1) = 0.

(5) See Example 1 with b = 2, or Example 4 with b = 8.

(6) For an index-nested loop we have B = 2 and C = Iouter + Touter × (ρ + µ).
Here, child outer is (5), inner is (1), and piped(6) = {(5)}, and stored(6) = {(1)}.
The index is a hash, so ρ = 1.2; the index is unclustered and on average just one Prof

tuple matches a given tuple in the result of (5), so µ = 1.
B(6) = max{B + B(5), B(1)} = max{2 + b, 0} = 2+b.

P(6) = C [I1:=F(1), I2:=P(5)] + M(1)

= P(5) + T(5) × (1.2 + 1) + 0

= 157 + 20 000 × 2.2
= 44 157.

(2′) For a sequential scan, we have B = 0 and C = I1.
Here, child 1 is (6), and piped(2′) = {(6)} and stored(2′) = �, so:
B(2′) = max{B + B(6)} = 0 + 2+b = 2+b.
P(2′) = C [I1 := P(6)] = P(6) = 44 157.

Example 7. A 2-buffer merge join at node (5) and explicit sort nodes for the arguments; the
presence of explicit sort nodes is actually a change of the tree. We aim at sorting Teaching in
main memory, while at the same time keeping the overall number of buffers as low as possible.
Here is the plan:

12



size: 283pCC
CC

CC
CC

CC
CC

CC
C

(5) ⊲⊳
cc=cc

sem=sem







2-buffer merge join
Pcost: 2257
buffers: 11

}}
}}

}}
}

size: 7p

}}
}}

}}
}}

BB
BB

BB
B

size: 150p

BB
BB

BB
BB

(3′) id







sort (in-memory)
Pcost: 7
buffers: 7

size: 7p

(4′) id







sort
Pcost: 2250
buffers: 2

size: 150p

(3) Teaching







noop
Mcost: 0
buffers: 0

(4) Transcript







noop
Mcost: 0
buffers: 0

Verification:

(3′) For sorting with N buffers we have B = N and C = I1 + 2F1⌈logN F1⌉ − 2F1.
Here, child 1 is (3), and piped(3′) = � and stored(3′) = {(3)}.
Take N = F(3) = 7, so that sorting can be done in main memory.

B(3′) = max{B , B(3)} = max{N , 0} = N = 7.

P(3′) = C [I1:=F(3)] + M(3)

= F(3) + 2F(3)⌈logN F(3)⌉ − 2F(3) + M(3)

= 7 + 2 × 7 × ⌈log7 7⌉ − 2 × 7 + 0
= 7.

(4′) For sorting with N buffers we have B = N and C = I1 + 2F1⌈logN F1⌉ − 2F1.
Here, child 1 is (4), piped(4′) = � and stored(4′) = {(4)}.

Take, rather arbitrarily, N as small as possible: N = 2.

B(4′) = max{B , B(4)} = max{N , 0} = N = 2.

P(4′) = C [I1:=F(4)] + M(4)

= F(4) + 2F(4)⌈log2 F(4)⌉ − 2F(4) + M(4)

= 150 + 2 × 150 × ⌈log2 150⌉ − 2 × 150 + 0
= 150 + 2 × 150 × 8 − 2 × 150
= 2250.

(5) For a merge join with two buffers, we have B = 2 and C = I1 + I2.
Here, child 1 is (3′), child 2 is (4′), and piped(5) = {(3′), (4′)} and stored(5) = �, so:

B(5) = max{B + B(3′) + B(4′)} = 2 + 7 + 2 = 11.

P(5) = C [I1 := P(3′), I2 := P(4′)]

= 7 + 2250
= 2257.

Example 8. A 2-buffer merge join at node (5) and explicit sort nodes for the arguments;
the presence of explicit sort nodes is actually a change of the tree. We aim at keeping the

13



overall number of buffers, including the output buffer, at most 10, and reserve as much buffers
as possible for the larger table: Transcript . Here is the plan:

size: 283pCC
CC

CC
CC

CC
CC

CC
C

(5) ⊲⊳
cc=cc

sem=sem







2-buffer merge join
Pcost: 1085
buffers: 9

}}
}}

}}
}

size: 7p

}}
}}

}}
}}

BB
BB

BB
B

size: 150p

BB
BB

BB
BB

(3′) id







2-buffer sort
Pcost: 35
buffers: 2

size: 7p

(4′) id







5-buffer sort
Pcost: 1050
buffers: 5

size: 150p

(3) Teaching







noop
Mcost: 0
buffers: 0

(4) Transcript







noop
Mcost: 0
buffers: 0

Verification:

(3′) For sorting with N buffers we have B = N and C = I1 + 2F1⌈logN F1⌉ − 2F1.
Here, child 1 is (3), and piped(3′) = � and stored(3′) = {(3)}.
Take N as small as possible, N = 2, so as to have as many buffers as possible for (4′).
B(3′) = max{B ,B(3)} = max{N , 0} = N = 2.

P(3′) = C [I1:=F(3)] + M(3)

= F(3) + 2F(3)⌈logN F(3)⌉ − 2F(3) + M(3)

= 7 + 2 × 7 × ⌈log2 7⌉ − 2 × 7 + 0
= 35.

(4′) For sorting with N buffers we have B = N and C = I1 + 2F1⌈logN F1⌉ − 2F1.
Here, child 1 is (4), and piped(4′) = � and stored(4′) = {(4)}.
Take N as large as possible in view of the assumed overall number of buffers: N = 5.
B(4′) = max{B ,B{4}} = max{N , 0} = N = 5.

P(4′) = C [I1:=F(4)] + M(4)

= F(4) + 2F(4)⌈logN F(4)⌉ − 2F(4) + M(4)

= 150 + 2 × 150 × ⌈log5 150⌉ − 2 × 150 + 0
= 150 + 2 × 150 × 4 − 2 × 150
= 1050.

(5) For a 2-buffer merge join, we have B = 2 and C = I1 + I2.
Here, child 1 is (3′), child 2 is (4′), and piped(5) = {(3′), (4′)} and stored(5) = �, so:

B(5) = max{B + B(3) + B(4)} = 2 + 2 + 5 = 9.

P(5) = C [I1 := P(3′), I2 := P(4′)]

= P(3′) + P(4′)

= 35 + 1050
= 1085.

14



References

[1] Michael Kifer, Arthur Bernstein, and Philip M. Lewis. Database Systems: An Application-

Oriented Approach, Complete Version, 2nd edition. Addison-Wesley, 2006.

15


