
A Greedy Algorithm for
Team Formation that is Fair over Time

Maarten Fokkinga

Database Group, CTIT, University of Twente, The Netherlands

Version of April 1, 2010, 9:03

ABSTRACT
In terms of a concrete example we derive a greedy algo-
rithm for a hard problem. The problem is to compute a
value which minimizes a given expression, and has expo-
nential time complexity. The greedy algorithm computes a
sub-optimal solution but has polynomial time complexity,
and is fast enough for practical applications. The concrete
problem is: the formation of teams from a given set of play-
ers such that, when repeated many times, each player is
equally often teammate of each other player. The algorithm
is easily coded in about thirty lines in a functional program-
ming language. A few simple experiments give an indication
of the quality of the greedy algorithm, and of some variants
which trade quality for speed. We also abstract from the par-
ticulars of the concrete problem, and formalize our greedy
algorithm in a general and abstract setting.

1. PROBLEM STATEMENT
Consider the following scenario. A fixed set of players is

known: Player . Several times in history —for example “on
a weekly basis”— so-called teams have been formed, each
team being a group of players. (Teams are nonempty and
mutually disjoint.) We want to have an algorithm A that
produces yet another team formation — for example“for the
coming week”. The input of algorithm A is the “current”
historical data about past team formations (preferably in
some aggregated form such as counts), the desired team size,
and the subset of players that want to play. Algorithm A

must have the following so-called fairness property:

When repeated over and over again, then in the end each
player is, as fair as possible, equally often teammate of
each other player.

When the fairness property is not fulfilled, players might in
the long run complain that they have been placed too often
together in one team, or that the team formation is biassed.

Footnote. This problem is actual in the recreational golf
sport. During a season of about forty weeks, at each week
the participating players, about fifty, are grouped into teams
of size three, and at some weeks the team size is four. (The
teams simultaneously play one game, with scores per team or
per individual player.) In the team formation at my club there
is no automated support for fairness, and, indeed, there have
been complaints by the players as expressed above.

We shall now first formalize the requirement in §2, then
design the algorithm in §4 with several variants in §5 for a
trade-off between efficiency of the computation and quality
of the result (as measured by the formal requirement), code

the algorithm in a functional programming style in §6, and
conclude with a modest experimental comparison between
the quality of the algorithm and its variants in §7. The
structure of the algorithm is for a large part independent of
the specific requirement, and has a wider applicability. It is
known as a form of greedy algorithm:

A greedy algorithm is any algorithm that follows the prob-
lem solving metaheuristic of making the locally optimal
choice at each stage with the hope of finding the global
optimum. Wikipedia,

http://en.wikipedia.org/w/index.php?title=Greedy_algorithm&oldid=338460107.

In §8 we give our greedy algorithm in an abstract form.

2. REQUIREMENT FORMALIZATION
Let us try and formalize the fairness requirement. Sup-

pose we have two algorithms, A1 and A2 that, after a suf-
ficiently large number of invocations, transform the current
state into future states; of course, the algorithms run for the
same number of invocations and, for each invocation, they
get as input the same desired team size and the same subset
of players. What property makes us designate A1 as “bet-
ter” than A2? Clearly, we must look at the final states and
find that the state resulting from A1 is “better” than the one
resulting from A2. We have two alternatives:

• To measure in a state how “equally often” a player p has
been teammate of the other players, we take the stan-
dard deviation of the function λ q :Player ′ • count(p, q),
where count(p, q) is the number of times player p, q have
been teammates in the history so far. Player p has to be
excluded from the function’s domain since “count(p, p)”
makes no sense; so we put Player ′ = Player \{p}. For ex-
ample, let Player = {0, 1, . . . , 8} and p = 0 and consider
the following counts:

q = 1 2 3 4 5 6 7 8 std dev

count1(0, q) = 2 2 3 2 3 3 2 2 0.4 . . .

count2(0, q) = 9 0 0 2 0 0 1 7 3.5 . . .

In the histories of both count1 and count2, player 0 has
19 times been teammate of some other player, but the
standard deviation of count1(0,) is smaller than that
of count2(0,). If all other things are equal, we declare
count1 better than count2.

• However, equality in absolute counts might be called ‘not
as fair as possible’. It may be more fair to look at the
frequency: the number of times p, q have been teammates

1

divided by the number of times that p, q could have been
teammates (i.e., were present in the same team forma-
tion in possibly different teams). We call this number
freq(p, q). For example, let Player = {0, 1, . . . , 8} and
p = 0 and consider the following frequencies:

q = 1 2 3 4 5 6 7 8
std
dev

freq1(0, q) = 4
5

4
5

4
5

4
5

2
3

2
3

2
3

2
3 0.06...

freq2(0, q) = 3
5

3
5

3
5

3
5

3
3

3
3

3
3

3
3 0.2

The notation 4/5 in column q means that player 0 and q

have been teammates 4 times while they have been par-
ticipating in the same team formation 5 times, possibly
in different teams; so freq(0, q) = 4/5 = 0.8 = 80%. In
the histories of both freq1 and freq2, player 0 has 24 times
been teammate of some other player, but the standard
deviation of freq1(0,) is smaller than that of freq2(0,).
If all other things are equal, we declare freq1 better than
freq2. (Note that regarding counts the second one is bet-
ter than the first one since, in that case, all counts are 3
and so the standard deviation is 0.) Thus we take as mea-
sure the standard deviation of the function: λ q :Player ′ •
freq(p, q). If some player q has not shown up at all, in
the entire history, then it doesn’t make sense to consider
player q ; indeed, freq(p, q) will be 0/0, and player q has
to be excluded from consideration. So we put Player ′ =
{q :Player | q 6= p ∧ freq(p, q) = ‘.../0’}).

In order to know which player to exclude and to avoid
division by zero, we choose to let freq(p, q) be a pair (a, b),
and transform this to the fraction a/b tacitly when the
need arises.

Of the two alternatives above, we will adopt the second one
in the sequel. The reader may notice, however, that the
sequel is almost completely independent from this particular
choice. The only reason to make the choice explicit is to be
less abstract and more concrete (easier to understand).

We have still to solve the following question:

How should the standard deviations for individual play-
ers p, p′, p′′, . . . contribute to the property that entire freq1

is “better than” entire freq2?

There are two options:

• One option is that for all players p, without exception, it
is required that ‘its standard deviation in freq1’ is smaller
than ‘that in freq2’. However, then the relation “better
than” is not total but partial (that is, not defined for all
frequency functions), and very partial indeed. This for-
malization makes the problem unsolvable and the algo-
rithm non-existent: too often it would be impossible to
achieve the situation that “each player is, as fair as possi-
ble, equally often teammate of each other player”.

• The other option is to somehow aggregate, over all p, the
standard deviations of p in freq1, and take that outcome
as freq1’s measure for “better than”. This makes “better
than” a total pre-order (not an order since different fre-
quencies may be “equally good”), and thus the problem
solvable. Aggregation in the form of summation seems
most reasonable (and taking the maximum seems second

best), and in order not to depend on the number of play-
ers, we divide the sum by that number, thus effectively
specializing aggregation to averaging.

Thus we arrive at the following definitions:

sdev(p, freq) = std dev of λ q :Player
′ • freq(p, q)

where

Player ′ = {q :Player | q 6= p ∧ freq(p, q) = ‘.../0’}

avg sdev(freq) =
1

#Player

P

p:Player
sdev(p, freq)

freq1 ¹ freq2 ≡ avg sdev(freq1) ≤ avg sdev(freq2)

Now the sub-phrase“each player is, as fair as possible, equally
often teammate of each other player” is interpreted as “the
resulting frequency is minimal with respect to ¹”.

There is one other sub-phrase in the informal requirement
that needs attention, namely “when repeated over and over
again, then in the end. . . ”. Since in practice it is not known
in advance which players will participate in which weeks
and, maybe, how many weeks the season will take, we pro-
pose to replace the sub-phrase “in the end” by “after each

invocation of the algorithm”. (This change is a weakening of
the original requirement, since an algorithm satisfying the
original requirement —assumed it makes sense somehow—
also satisfies the new one.) Thus, with as input a frequency
info freq , a desired team size n, and a player set P , the re-
quired algorithm A has to produce the following outcome
A(freq ,n,P):

A(freq ,n,P) =

some team formation T for size n of P such that

for each other team formation T ′ for size n of P :

“freq updated with T” ¹ “freq updated with T ′ ”

The formalization of the concepts in this requirement is
straightforward:

• T is a team formation for size n of P , denoted T ∈
TF (n,P), if: T is a partitioning of P such that all parts
have size in 1 . . n and at most one part has size smaller
than n (their sizes together sum up to #P which need not
be a multiple of n).

• freq updated with T , denoted freq ⊕ T , is: the function
that maps (p, q) to

(a + 〈〈p, q are teammates in T 〉〉, b + 〈〈p, q are in T 〉〉)

where ‘a/b’ = freq(p, q)

Here, the notation 〈〈condition〉〉 denotes 1 if condition

holds, and 0 otherwise.

Thanks to the way ¹ has been defined in terms of the ≤-
relation on the avg sdev values, algorithm A can now be
specified in one line:

A(freq ,n,P) ∈ argminT :TF(n,P) avg sdev(freq ⊕ T)

Indeed, A(freq ,n,P) has to be some T from TF (n,P) for
which avg sdev(freq⊕T) is minimal. Operation argmin is a
well-known mathematical concept, and may be defined thus:

argminx :X f x = {x :X | (∀ y :X • f x ≤ f y)}

Since all ingredients of the specification are computable, the
above specification is executable as well. However, TF (n,P)
has more than #P

n
! members, so that, as an algorithm, the

specification is far too inefficient for all practical purposes.

2

3. BACKTRACKING
A computation of A(freq ,n,P) might be done by a sys-

tematic search over all totally and partially completed team
formations from TF (n,P), meanwhile computing or approx-
imating avg sdev(freq⊕T), and comparing these with other
such values. This is backtracking : simple to formulate but
still time-consuming to execute. Too inefficient for the prac-
tical applications that we have in mind (about fifty players,
team size of three or four). So we propose a greedy algorithm
in the next section.

4. GREEDY ALGORITHM
We adopt a greedy approach: we are willing to weaken the

requirement and we strive for an algorithm A′ in which the
team formation is built gradually in the following way:

• There is no backtracking : at each stage in the formation,
each two players that are teammates remain teammates
in all subsequent stages.

• Each decision to let two players be teammates, is locally

optimal.

More precisely, we propose and accept that algorithm A′

with input freq ,n,P has the following structure; it succes-
sively computes team formations T0,T1, . . . ,TN of P , and
then delivers TN , where the following holds:

• In each Ti , the team sizes are at most n (and may differ
from each other).

• T0 is the team formation in which each team consists of
exactly one player.

• Each Ti contracts to Ti+1, meaning that Ti+1 results from
Ti by uniting two or more teams and not touching all
other teams.

• TN has at most one team whose size is smaller than n.

• Each Ti is finalizable, which is explained, motivated, and
defined below.

The execution of this greedy algorithm A′ costs at most
#P

n
contraction steps, which compares favorably with the

more than #P

n
! comparison steps in the brute-force realiza-

tion of A. The downside, however, is that the formal spec-
ification of A will not hold of A′. Even worse, we cannot
predict precisely what property will hold for the outcome
of A′. The only “claim”we can make is that we shall use the
specification of A as a guide in the contraction steps, hoping
that then the outcome T of A′ will yield a reasonably small
value for avg sdev(freq ⊕ T).

Before elaborating the contraction step, there is one more
concern: proper termination or, in other words, the possi-
bility to do a contraction step as long as the final formation
has not been achieved. We call this property finalizability of
a team formation. The following example shows a formation
that is not finalizable:

Take n = 3 and let all teams in T have size 2; then T

is not final but nevertheless each contraction of T has a
team whose size exceeds 3 and thus violates the team size
constraint (“all team sizes at most n”) and consequently
cannot be taken as the successor of T in the algorithm.
If this T is one of the Ti in the algorithm, then a succes-
sor Ti+1 does not exist and the algorithm cannot deliver
a result.

We shall now first elaborate the finalizability condition and
then the contraction step; having done so, the greedy algo-
rithm has been defined completely.

Finalizability
Let us first introduce some terminology:

t is complete ≡ size t = n

T is final ≡ at most one team in T is incomplete

Now, consider a team formation. What property of the for-
mation guarantees that we can contract it eventually to a
final team formation? The weakest such property seems very
hard to formulate and, worse, costly to check: somehow all
possible future contractions have to be considered in order
to see whether progress can still be made; exponential time
complexity is lurking again [I’ve not elaborated and analyzed
this in detail]. So we take a crude approach and are satisfied
with a sufficient condition (stronger than necessary):

Finalizability :
There are enough singleton teams to complete all-but-one
non-singleton teams.

Here is an illustration of a typical finalizable team formation:

... n−3 n−1 n−4 n−0 n−4 · · ·

• · · · • • • • • • • • • • • • • · · ·

The top line lists each non-singleton team as a box with its size
made explicit; the bottom line lists, in the form of bullets, the
singleton teams that complete the teams above them. In the
top line the first box represents the team that is possibly not
completed by the singleton teams. In the bottom line the first
group of singleton teams are those that are more than suffi-
cient to complete all-but-one non-singleton teams; this group
is empty iff “there are precisely just enough . . . ”.

For example:

Take n = 5 and let the teams in T have sizes 3, 2, 1.
Then T can be further contracted to a final formation
with teams of size 3+2 and 1, but the condition is not ful-
filled: the single singleton team is not enough to complete
all-but-one non-singleton teams. If the teams in T have
sizes 3, 2, 1, 1, then the two singleton teams are enough
contract T to a final formation with teams of sizes 3+1+1
and 2.

Because the finalizability condition is so strong, it happens
to be sufficient as well:

Theorem. Each contraction of two teams (with result size
at most n) preserves finalizability except when there are
precisely just enough singleton teams to complete all-but-
one non-singleton teams, and the non-completed team is
uniquely determined and is one of the two contraction
teams, and the other contraction team is a singleton.

Proof sketch. Consider the typical finalizable team for-
mation illustrated above. By case distinction it is easy to
visually see the truth of the claims of the theorem; the
cases are: uniting two non-first teams from the top line,
one non-first team from the top line and one singleton
below it, etc. The exceptional case is: the first group of
singletons is empty and the teams to be united are the
first team of the top line and another singleton team.

3

So, finalizability guarantees that a contraction can be done
to a finalizable formation, and so, by induction, that a final
formation can be reached. Finalizability is easy to formalize:

finalizable(T) ≡ #T1 ≥
P

t:T3
(n − size t)

where

T1 = {t :T | 1 = size t} — the singleton teams

T2 = {t :T | 1 < size t} — the non-singleton teams

T3 = T2 if T2 = � else T2 \ {t0}

t0 ∈ argmint: T2
size t

Team t0 stands for the exception that may be left incom-
plete; it is well-defined iff T2 6= �.

The contraction step
First we define T [t , . . . , t ′] to mean: the contraction of T

by uniting just t , . . . , t ′ into one team, and leaving all other
teams untouched.

Consider a non-final stage in the greedy algorithm, that is,
a team formation Ti which is non-final, finalizable, and has
only teams of size at most n. Our task is to define a con-
traction of Ti to some Ti+1 that, again, has teams of size
at most n and is finalizable. Moreover, hoping for a good
result in the end, we must use the specification of A as a
guide. So, a suitable definition is:

Ti+1 = some T of S that minimizes avg sdev(freq ⊕ T)

where

S is the set that consists of formations Ti [t , . . . , t
′] for each

t , . . . , t ′ such that (i) size t + · · · + size t ′ ≤ n,
(ii) Ti [t , . . . , t

′] is finalizable.

How large is set S? Too large; exponential time complexity
is lurking again. [There are

P

k : 2..#Ti−1(
#Ti

k
) contractions

of Ti .] So we severely restrict S to a much smaller set by
restricting t , . . . , t ′ to just two teams:

S consists of formations Ti [t , t
′] for each t , t ′ such that

(i) size t + size t ′ ≤ n, (ii) Ti [t , t
′] is finalizable.

How large is set S? The number of choices for each of t and t ′

is bounded by #Ti , which is at most #P , and, in the greedy
algorithm, this contraction step has to be done at most #P

n

times. Although the number of steps has an acceptable order
of magnitude, (#P)3/n, the question arises: can we do more
efficiently while still achieving an acceptably small value of
avg sdev(freq ⊕ Ti [t , t

′])? We eliminate one factor #P in
the time complexity by severely restricting the choices for t ,
leaving an extensive search for t ′ only:

S consists of formations Ti [t , t
′] for each t , t ′ such that

(i) t is promising, (ii) size t + size t ′ ≤ n, (iii) Ti [t , t
′] is

finalizable.

Team t is promising if: (a) t is incomplete, (b) t is the
team of some player p for which sdev(p, freq⊕Ti) is max-
imal.

Condition (a) is necessary for (ii). Condition (b) leaves
hardly any choice for t (it almost uniquely determines t)
and is intended to make possible a small value of avg sdev

(freq ⊕ Ti [t , t
′]), by a suitable choice for t ′: in order to de-

crease the average standard deviation, it seems promising to
start with the player that has a maximal standard deviation,

and find for this one a team or teammate that decreases the
deviation as much as possible.

This leads us to define Ti+1 = Ti [t , t
′] where:

• t = the team in Ti of some player p whose team is incom-
plete and which has maximal sdev(p, freq ⊕ Ti).

• t ′ = a team in Ti of size at most n−size t such that Ti [t , t
′]

is finalizable and avg sdev(freq ⊕ Ti [t , t
′]) is minimal.

This completes the elaboration of the contraction step and
thus of the greedy algorithm. The complete code is pre-
sented in §6. Figure 1 in §9 shows the algorithm in action.

5. FURTHER TRADE-OFFS
Trade-off 1. We can improve the time complexity of the

contract step by this alternative definition for t ′:

t ′ = a team in Ti such that either t or t ′ is a single-
ton team, its size is at most n − size t , and Ti [t , t

′] is
finalizable and, in addition, sdev(p, freq) is minimal for
the/some p in t ′.

There are two major differences with the previous definition.
First, now a contraction step always adds a singleton team
to another, which decreases the search for t ′ considerably.
Second, we are not aiming at a minimal avg sdev(freq ⊕
Ti [t , t

′]) (which is an expensive computation) but instead
hope that the least frequent player (much cheaper to find)
together with the already chosen team with a maximal fre-
quent player, is a reasonable attempt to achieve a small value
for avg sdev(freq ⊕ Ti [t , t

′]). Experiments in §7 show that
this trade-off decreases the computation time by a factor of
about five, but also decreases the quality of the outcome T :
after 25 iterations the avg sdev value of the final frequency
is doubled.

Trade-off 2. A second trade-off is not to search for a t

with maximal sdev(p, freq ⊕ Ti) computed over the entire
set Player (minus what is explicitly excluded in sdev itself)
but only over the set P of players for which a team forma-
tion is being constructed; this is easy to realize by giving
sdev and avg sdev an extra parameter for P . And similarly
for t ′. Experiments in §7 show that this trade-off halves the
computation time (in our Miranda implementation) and, re-
markably, does not affect the quality of the outcome T at
all: the new final avg sdev value is about the same as the
original one, and sometimes even smaller!

6. THE CODE
We express the algorithm in a functional language like

Miranda or Haskell, but take the liberties of using math
notations: capital letters for normal values (P ,T), symbols
for infix operations (⊕, ·), logical operations (∧,∨,¬), and
non-strict indentation. We do not present the coding of the
trade-offs; they consist of some simple small changes.

We represent sets by unordered lists without duplicates.
So in the context of some player set P , the list [[p] | p←P]
represents the initial team formation T0 consisting of all
singleton sets {p} for p ∈ P .

The code for the greedy algorithm is just one line:

greedyA(freq , n, P) = until final (contract freq P)T0

where T0 = [[p] | p←P]

Function until is defined in the standard environment; the
invocation until cond f x yields f n x where n is the smallest i

4

for which cond (f i x) is true. Function final is really simple:

size t = #t

complete t = size t = n

final T = #[t | t←T ; ¬ complete t] ≤ 1

In order to give the code for contract , we shall first give the
auxiliary functions. The math expression ‘ argminx :X f (x)’
is coded as argmin [(x , f x) | x←X]. A definition of argmin

with linear complexity is simple (and occurs in my actual
code), but would take more lines than the following defini-
tion, whose time complexity is quadratic in its arguments
size:

argmin zs = [x | (x , fx)←zs; and [fx≤fy | (y , fy)←zs]]

argmax = argmin · map f where f (x , v) = (x ,−v)

When we have to choose some member of the result list of
argmin, we simply take the head:

someof = head

Next the standard deviation. We represent a function f with
domain domf by the pair (domf , f):

standarddev ([], f) = 0

standarddev (domf , f) =

sqrt (sum [(f x − avg)2 | x←domf] / #domf)

where avg = sum [f x | x←domf] / #domf

The standard deviation is invoked with freq by our avg sdev

and sdev . Recall that freq will yield a pair (a, b) which has
to be transformed to the value a/b (only if it makes sense);
this is done by composing freq with val (written as val .freq):

avg sdev (freq) =
sum [sdev(p, freq) | p←Player]

#Player

sdev (p, freq) = standarddev (dom, val .freq)

where

dom =[(p, q) | q←Player ; q 6= p; snd(freq(p, q)) 6= 0]

val(a, b)=a/b

After these preparations, the code for contract literally fol-
lows the abstract definition:

contract freq T = T·[t , t ′] where

t = someof (argmax [(t , sdev(p, freq ⊕ T))

| t←T ;

¬ complete t ;

p←t])

t ′ = someof (argmin [(t ′, avg sdev (freq ⊕ T·[t , t ′]))

| t ′←T -- [t];

size t + size t ′ ≤ n;

finalizable (T·[t , t ′])])

It only remains to define infix operations · and ⊕. First,
T ·[t , t ′] denotes the team formation that results from T by
uniting just t , t ′:

T ·[t , t ′] = [t++t
′] ++ (T -- [t , t ′])

Second, the code for freq ⊕ T literally follows the abstract
definition:

(freq ⊕ T)(p, q) = (a + a
′, b + b

′) where

(a, b)= freq (p, q)

a ′ = toNum (or [member t p ∧ member t q | t←T])

b′ = toNum (member P p ∧ member P q)

P = concat T

Here, toNum converts a truth value to a number:

toNum x = 1 if x else 0

Finally, for completeness’ sake once more the definition of
finalizability:

finalizable T = #T1 ≥ sum[n − size t | t←T3] where

T1 = [t | t←T ; 1 = size t]

T2 = [t | t←T ; 1 < size t]

T3 = T2 if T2 = [] else

T2 -- [someof (argmin [(t , size t) | t←T2])]

7. QUALITY ASSESMENT
It is almost certain that the outcome T ∈ TF (n,P) of

greedyA(freq ,n,P) does not minimize avg sdev(freq ⊕ T);
how small the value of avg sdev(freq ⊕ T) will be can only
be assessed experimentally. For a thorough assessment we
should vary all parameters and average the outcomes, and
even more, we should vary the problem statement so as to
get an idea of our greedy algorithm in general. Here we
are satisfied with a rough assessment of the quality of the
algorithm and its variants, and do some test runs with the
following fixed parameter settings:

• Desired team size: n = 3

• Player = [0..13]

• Number of iterations (= number of “weeks”): 25

• Initial frequency: either all-zero or random; freqZ and
freqR, respectively. These are defined thus: freqZ (p, q) =
‘0/0’ and freqR(p, q) = ‘a/b’ where a, b are chosen uni-
form randomly from 0 . . 19, and interchanged so as to get
a ≤ b. For completeness’ sake, Figure 5 shows freqR.

• P : the players that want to play. These have been ran-
domly generated, but in such a way that players 0. .13 div 2
will play almost always (90% probability) and the others
will play about half of the time (45% probability); see the
left column in Figure 1.

We compare the following algorithms:

• greedyA: the algorithm A′ as described and coded in ear-
lier sections.

• trade-off 1: the more efficient choice for t ′ in contract .

• trade-off 2: in contract , the t and t ′ are determined by
computing sdev and avg sdev over P rather than over
Player .

• trade-off 1&2: the combination of the optimizations of
trade-off 1 and trade-off 2.

• rndm: the team formation is completely random; no at-
tempt is made to minimize avg sdev().

• bias: the ith team is the ith segment of size n of sort P .

5

We run the algorithm “for 25 weeks”: for each week num-
ber w we put freqw+1 = freqw ⊕greedyA(freqw ,n,Pw), taking
freq0 to be the all-zero freqZ or the random freqR, respec-
tively.

Here is the comparison between the four variants of the
algorithm, where avg sdev(freq) had to be minimized. The
count columns are listed for completeness’ sake, and there-
fore in small print: the algorithm did not aim at a small
value of avg sdev(count). The column ‘reductions’ gives
the number of reductions (elementary computation steps)
in multiples of 107 that our implementation took with the
language Miranda; it is a rough indication of the relative
run times. Clearly, greedyA and trade-off 2 (abbreviated to
‘gA’ and ‘t2’) are almost of the same quality, that is, they
both have a small avg sdev(freq); the winner depends on
the initial frequency started with:

freq0 = freqZ freq0 = freqR × 107

avg sdev avg sdev avg sdev avg sdev red’s

(freq25) (count25) (freq25) (count25)

gA 0.069 1.096 0.122 3.427 59 ± 2

t2 0.072 1.071 0.121 3.407 24

t1&2 0.145 1.671 0.182 4.554 5

t1 0.169 1.920 0.188 4.745 9

rndm 0.197 2.178 0.200 5.065

bias 0.297 3.618 0.224 6.223

Notice that the average standard deviation of the final freq25

produced by trade-off 1&2 and trade-off 1 is more than twice

that value of greedyA and trade-off 2, when the initial fre-
quency is the all-zero freqZ ; for the initial freqR the ratio is
one-and-a-half.

Here is the comparison between the four variants of the al-
gorithm, where avg sdev(count) had to be minimized. Now,
the freq columns are listed for completeness’ sake, and there-
fore in small print: the algorithm did not aim at a small
value of avg sdev(freq). Again, greedyA and trade-off 2 are
almost of the same quality:

freq0 = freqZ freq0 = freqR × 107

avg sdev avg sdev avg sdev avg sdev red’s

(freq25) (count25) (freq25) (count25)

gA 0.090 1.071 0.135 3.275 27 ± 2

t2 0.086 1.066 0.135 3.288 11

t1&2 0.135 1.464 0.195 4.742 2

t1 0.156 1.744 0.193 4.678 5 ± 2

rndm 0.197 2.178 0.200 5.065

bias 0.297 3.618 0.224 6.223

Comparing the two tables we see that, as expected, each
variant produces a better final frequency when it is designed
to minimize the avg sdev -value of freq rather than that of
count ; and, similarly, better final counts when it is designed
to minimize avg sdev(count) rather than avg sdev(freq).

In the appendix, §9, we give some more figures:
• Figure 1 gives the produced team formations.
• Figure 2 gives an indication of the quality of greedyA: its

behavior over time; for the other variants the behavior
looks similar.

• Figure 3 and 4 give the initial freqZ and countZ and their
resulting freq25 and count25.

• Figure 5 and 6 give the initial freqR and countR and their
resulting freq25 and count25.

8. ABSTRACT GREEDY ALGORITHM
To show the wider applicability of our greedy algorithm,

we abstract from the particulars of our concrete team for-
mation problem and formulate the algorithm in an abstract
setting. First we present the abstract formulation, and af-
terwards we show how our team formation problem is a par-
ticular instantiation of the abstract one.

The abstract problem is to produce for input M and x an
output M ′ such that the value of f (M ⊕M ′) is minimal. The
choice for output M ′ is not entirely free; it must come from a
set M that may depend on M and x . The types of M , x and
the entities M, ⊕, f are fixed parameters that characterize
the problem. Formally, an algorithm A is required such that:

for all M , x we have A(M , x) ∈ argminM ′:M f (M ⊕ M ′).

Suppose that the cardinality of M is exponential in the size
of M and x , so that the straightforward brute-force compu-
tation is unacceptable: a search over entire M for an M ′

that has the least f (M ⊕ M ′) value. Then, the following
greedy algorithm A′ might come to rescue:

Find a superset M′ of M and a function next : M′ →�M′, and construct a sequence M0,M1, . . . ,Mn such that:

– M0 ∈ M′ and M0 is easy to compute from M and x ;

– Mi+1 ∈ argminM ′:next(Mi)
f (M ⊕ M ′) — this is the

locally optimal choice;

– Mn is the first one in M0,M1, . . . that is in M; be
sure that n is finite.

Deliver Mn as outcome of A′(M , x).

Regarding the quality of A′ you must hope that Mn has
an acceptably small value f (M ⊕ Mn). Regarding the time
complexity of A′: this is polynomial in the size of M and x

if both the length of the sequence M0, . . . ,Mn and the time
complexity of each next(Mi) are polynomial in the size of M

and x .
One may think of M and M ′ as (multidimensional) ma-

trices, and ⊕ as matrix addition (or multiplication, or what-
ever). Function f may be specialized to “average g” over all
matrix rows (or “sum g”, “max g”, or any other aggregation
of g) for some suitable g .

Instantiation

In our team formation problem, M is instantiated to freq ; a
frequency is really a two-dimensional matrix, with p and q

as indices. Output M ′ is instantiated to T ; indeed, a team
formation T can be considered as a matrix T ′, namely:

T
′(p, q) = 〈〈“p and q are teammates in T”〉〉

Here, 〈〈cond〉〉 denotes 1 if cond holds, and 0 otherwise.
Operation ⊕ is then matrix addition: (freq ⊕ T ′)(p, q) =
freq(p, q)+T ′(p, q). Function f is instantiated to avg sdev .
Notice that M (the set of all possible outcomes) is the set
of matrices that represent final team formations, while ma-
trices from M′ may represent non-final team formations.

9. APPENDIX:
FIGURES FOR THE EXPERIMENTS

See next pages.

6

Players that want to play Team formation for freqZ Team formation for freqR

0 1 2 3 4 5 7 9 10 11 12 13 [2 1 0] [5 4 3] [10 9 7] [13 12 11] [9 2 12] [11 10 7] [13 3 0] [4 1 5]

0 1 2 3 4 6 8 9 10 11 12 [8 6] [2 1 0] [11 9 3] [12 10 4] [9 12] [1 3 2] [8 11 10] [6 4 0]

0 1 2 3 5 6 7 8 9 10 11 [8 6] [0 3 7] [5 2 9] [11 10 1] [11 2] [8 7 0] [5 1 3] [6 10 9]

0 1 2 4 5 6 7 8 9 10 [2 7 8] [5 10 1] [4 9 0] [6] [8 9 2] [5 7 10] [6 4 0] [1]

0 1 3 4 5 6 7 8 9 [0 5 3] [4 7 6] [1 9 8] [8 7 9] [5 1 3] [6 4 0]

0 2 3 4 5 6 7 8 [4 0 8] [5 7] [3 2 6] [8 0] [4 5 7] [6 2 3]

1 2 3 4 5 6 7 [2 5 6] [1 4 3] [7] [4 1 5] [6 2 3] [7]

0 1 2 3 4 5 6 [4 2 3] [1 6 0] [5] [1 3 5] [6 4 0] [2]

0 1 2 3 4 5 13 [3 2 0] [13 4 1] [5] [4 1 5] [13 3 0] [2]

0 1 2 3 4 6 12 [0 6 4] [12 1 3] [2] [4 12 3] [6 2 0] [1]

0 1 2 3 5 6 11 13 [1 5] [11 2 6] [13 3 0] [2 5] [11 1 0] [13 6 3]

0 1 2 4 5 6 10 12 [5 1] [10 6 4] [12 0 2] [1 0] [4 12 5] [6 10 2]

0 1 3 4 5 6 9 11 [3 9] [4 1 6] [11 0 5] [9 0] [11 3 5] [6 4 1]

0 2 3 4 5 6 8 10 [3 6] [4 2 5] [10 0 8] [2 5] [4 8 3] [6 10 0]

1 2 3 4 5 6 7 9 [3 5 7] [6 9] [4 2 1] [7 3] [9 5 2] [6 4 1]

0 1 2 3 4 5 6 8 [2 0] [3 1 6] [4 5 8] [1 5] [4 8 0] [6 2 3]

0 1 2 3 4 5 6 7 13 [3 6 0] [7 1 4] [13 2 5] [2 5 7] [4 1 3] [13 6 0]

0 1 2 3 4 5 6 12 13 [4 0 2] [12 6 5] [13 3 1] [2 0 1] [12 4 5] [13 6 3]

0 1 2 3 4 5 6 11 12 [2 6 5] [11 1 3] [12 4 0] [12 2 5] [6 0 3] [11 1 4]

0 1 2 3 4 5 10 11 13 [11 4 1] [10 3 2] [13 0 5] [4 5 2] [11 10 1] [13 0 3]

0 1 2 3 4 6 9 10 12 13 [3 4 2] [12 9 1] [13 6 10] [0] [9 10 1] [12 2 0] [13 6 4] [3]

0 1 2 3 5 8 9 11 12 13 [11 0 1] [13 9 2] [8 3 5] [12] [9 2 5] [12 1 3] [13 8 11] [0]

0 1 2 4 6 7 8 10 11 12 [10 0 4] [11 8 12] [7 1 2] [6] [4 12 0] [6 10 2] [11 7 8] [1]

0 1 3 5 6 7 9 10 11 [1 0 9] [10 3 5] [11 7 6] [3 1 5] [6 9 10] [11 7 0]

0 2 4 5 6 8 9 10 [4 0] [9 6 5] [8 2 10] [2 5] [9 6 10] [4 8 0]

Figure 1: The greedy algorithm in action, during 25 successive weeks. For each week number in 1 . . 25, the
left column lists the players for which a team formation has to be produced (the players have been generated
randomly, with a 90% probability for players 1 . . 6 and a 45% probability for the remaining players). The
other columns give the team formations produced by greedyA when the aim was to minimize avg sdev(freq) —
not avg sdev(count). The middle column for the case that the initial frequency is freqZ ; the right column for
freqR.

The values of avg sdev(freqw) for each week w ∈ 1 . . 25 are shown in Figure 2, while Figures 4 and 6 show
the final freq25 for week 25.

7

greedy algorithm random team formation

initial all-zero frequency initial random frequency initial all-zero frequency initial random frequency

week w freqw countw freqw countw freqw countw freqw countw

avg sdev(↑) avg sdev(↑) avg sdev(↑) avg sdev(↑) avg sdev(↑) avg sdev(↑) avg sdev(↑) avg sdev(↑)

0 0.000 0.000 0.305 4.345 0.000 0.000 0.000 0.000

1 0.331 0.309 0.273 4.241 0.331 0.309 0.286 4.317

2 0.337 0.468 0.255 4.192 0.344 0.478 0.275 4.337

3 0.271 0.536 0.237 4.118 0.324 0.584 0.266 4.421

4 0.228 0.563 0.224 4.056 0.278 0.647 0.255 4.438

5 0.212 0.591 0.215 4.009 0.274 0.770 0.250 4.468

6 0.192 0.592 0.210 3.977 0.267 0.825 0.246 4.470

7 0.188 0.613 0.206 3.940 0.262 0.853 0.243 4.497

8 0.182 0.645 0.203 3.919 0.252 0.872 0.240 4.478

9 0.183 0.693 0.197 3.871 0.225 0.937 0.236 4.471

10 0.176 0.714 0.195 3.837 0.216 0.997 0.232 4.438

11 0.159 0.739 0.187 3.795 0.215 1.057 0.228 4.467

12 0.153 0.780 0.183 3.765 0.215 1.128 0.225 4.507

13 0.149 0.808 0.181 3.795 0.215 1.220 0.224 4.596

14 0.140 0.808 0.178 3.776 0.212 1.283 0.222 4.631

15 0.138 0.852 0.175 3.769 0.212 1.355 0.221 4.664

16 0.135 0.894 0.173 3.750 0.206 1.397 0.218 4.643

17 0.127 0.946 0.167 3.703 0.210 1.486 0.214 4.684

18 0.111 0.985 0.162 3.673 0.215 1.607 0.213 4.740

19 0.110 1.063 0.158 3.662 0.215 1.727 0.212 4.795

20 0.098 1.072 0.153 3.641 0.219 1.843 0.210 4.837

21 0.086 1.069 0.145 3.611 0.211 1.904 0.205 4.884

22 0.079 1.072 0.138 3.556 0.211 1.988 0.202 4.897

23 0.075 1.080 0.131 3.513 0.202 2.082 0.201 4.956

24 0.072 1.084 0.125 3.448 0.201 2.171 0.201 5.053

25 0.069 1.096 0.122 3.427 0.197 2.178 0.200 5.065

Figure 2: The behavior of greedyA over time when the aim is to minimize avg sdev(freq); the aim was not to
minimize avg sdev(count) so these numbers are in small print. The behavior of the other variants is similar.
Starting with the all-zero frequency, avg sdev(freq) decreases faster (than with the random frequency), because
then there are fewer different values in freq1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 sdevF sdevC

0: 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0.000 0.000

1: 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0.000 0.000

2: 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0.000 0.000

3: 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0.000 0.000

4: 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0.000 0.000

5: 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0.000 0.000

6: 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0.000 0.000

7: 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0.000 0.000

8: 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0.000 0.000

9: 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0.000 0.000

10: 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0.000 0.000

11: 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0.000 0.000

12: 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0.000 0.000

13: 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0.000 0.000

averaged 0.000 0.000

Figure 3: The initial all-zero frequency freqZ . Taking in each ‘a/b’ only the a, we have the initial countZ . For
both freqZ and countZ the standard deviation in each row, and the average over all rows, is 0.0. (Remember
that for the standard deviation of frequencies the entries ‘.../0’ are discarded.)

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 sdevF sdevC

0: 5/20 6/20 5/19 7/19 3/19 3/19 1/8 2/10 2/10 2/11 2/10 2/9 2/8 0.063 1.804

1: 5/20 4/19 5/19 6/18 3/18 3/18 2/9 1/7 3/10 2/9 4/10 2/9 2/8 0.068 1.423

2: 6/20 4/19 5/18 5/19 5/18 4/18 2/8 2/9 2/8 2/10 1/8 1/9 2/8 0.054 1.657

3: 5/19 5/19 5/18 4/17 5/18 4/17 2/8 1/7 2/9 2/7 2/9 1/7 2/8 0.044 1.542

4: 7/19 6/18 5/19 4/17 3/17 4/18 2/8 2/8 1/8 3/9 1/6 2/8 1/6 0.070 1.875

5: 3/19 3/18 5/18 5/18 3/17 4/17 2/9 2/8 2/9 2/8 1/8 1/5 2/7 0.049 1.264

6: 3/19 3/18 4/18 4/17 4/18 4/17 2/9 2/9 2/9 2/9 2/7 1/7 1/4 0.037 1.077

7: 1/8 2/9 2/8 2/8 2/8 2/9 2/9 1/5 1/6 1/5 1/4 0/2 0/2 0.085 0.722

8: 2/10 1/7 2/9 1/7 2/8 2/8 2/9 1/5 1/6 2/6 1/4 1/3 0/1 0.084 0.625

9: 2/10 3/10 2/8 2/9 1/8 2/9 2/9 1/6 1/6 1/7 1/6 1/4 1/3 0.058 0.634

10: 2/11 2/9 2/10 2/7 3/9 2/8 2/9 1/5 2/6 1/7 1/6 1/5 1/3 0.063 0.606

11: 2/10 4/10 1/8 2/9 1/6 1/8 2/7 1/4 1/4 1/6 1/6 2/5 1/4 0.086 0.843

12: 2/9 2/9 1/9 1/7 2/8 1/5 1/7 0/2 1/3 1/4 1/5 2/5 1/4 0.096 0.576

13: 2/8 2/8 2/8 2/8 1/6 2/7 1/4 0/2 0/1 1/3 1/3 1/4 1/4 0.102 0.697

averaged 0.069 1.096

Figure 4: The final freq25 resulting from freqZ . Taking in each ‘a/b’ only the a, we have the final count25.
The last columns give per row p the values of sdev(λ q • freq25(p, q)) and sdev(λ q • count25(p, q)).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 sdevF sdevC

0: 5/9 6/18 2/18 4/16 10/13 2/12 1/5 1/18 16/18 7/14 4/6 5/17 1/5 0.256 4.104

1: 5/9 7/15 0/19 0/9 0/8 14/16 11/19 3/4 9/18 4/19 1/3 3/5 14/15 0.308 4.924

2: 6/18 7/15 1/5 14/17 5/14 3/14 6/9 3/8 2/12 11/19 13/15 3/16 14/16 0.255 4.509

3: 2/18 0/19 1/5 5/9 4/19 9/17 10/17 8/15 15/18 8/13 3/4 4/9 1/5 0.248 4.198

4: 4/16 0/9 14/17 5/9 1/8 0/8 9/11 1/14 4/4 10/10 7/17 0/14 14/17 0.385 4.921

5: 10/13 0/8 5/14 4/19 1/8 13/13 2/9 5/5 2/2 4/17 10/16 4/14 6/6 0.369 3.689

6: 2/12 14/16 3/14 9/17 0/8 13/13 13/17 9/11 7/19 0/19 16/18 13/14 0/10 0.378 5.745

7: 1/5 11/19 6/9 10/17 9/11 2/9 13/17 0/10 6/12 1/4 1/16 2/8 5/17 0.257 4.240

8: 1/18 3/4 3/8 8/15 1/14 5/5 9/11 0/10 3/17 6/14 1/17 7/10 1/17 0.332 2.893

9: 16/18 9/18 2/12 15/18 4/4 2/2 7/19 6/12 3/17 0/6 4/5 8/17 11/14 0.321 4.794

10: 7/14 4/19 11/19 8/13 10/10 4/17 0/19 1/4 6/14 0/6 1/8 7/19 6/8 0.285 3.552

11: 4/6 1/3 13/15 3/4 7/17 10/16 16/18 1/16 1/17 4/5 1/8 8/12 10/15 0.289 4.827

12: 5/17 3/5 3/16 4/9 0/14 4/14 13/14 2/8 7/10 8/17 7/19 8/12 3/9 0.238 3.254

13: 1/5 14/15 14/16 1/5 14/17 6/6 0/10 5/17 1/17 11/14 6/8 10/15 3/9 0.344 5.182

averaged 0.305 4.345

Figure 5: The initial random frequency freqR. Taking in each ‘a/b’ only the a, we have the initial countR.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 sdevF sdevC

0: 8/29 9/38 6/37 11/35 10/32 10/31 3/13 5/28 17/28 8/25 6/16 7/26 5/13 0.108 3.407

1: 8/29 9/34 7/38 7/27 8/26 16/34 11/28 3/11 10/28 6/28 4/13 4/14 14/23 0.109 3.683

2: 9/38 9/34 5/23 15/36 13/32 9/32 7/17 4/17 6/20 13/29 14/23 6/25 14/24 0.128 3.692

3: 6/37 7/38 5/23 8/26 9/37 15/34 11/25 9/22 15/27 8/20 4/13 6/16 6/13 0.115 3.341

4: 11/35 7/27 15/36 8/26 8/25 7/26 10/19 4/22 4/12 10/19 8/23 4/22 15/23 0.134 3.522

5: 10/32 8/26 13/32 9/37 8/25 13/30 5/18 5/13 4/11 5/25 11/24 7/19 6/13 0.078 2.935

6: 10/31 16/34 9/32 15/34 7/26 13/30 13/26 9/20 10/28 6/28 16/25 13/21 4/14 0.128 3.697

7: 3/13 11/28 7/17 11/25 10/19 5/18 13/26 3/15 7/18 3/9 4/20 2/10 5/19 0.111 3.543

8: 5/28 3/11 4/17 9/22 4/22 5/13 9/20 3/15 5/23 7/20 4/21 7/13 2/18 0.123 2.143

9: 17/28 10/28 6/20 15/27 4/12 4/11 10/28 7/18 5/23 4/13 4/11 10/21 11/17 0.123 4.191

10: 8/25 6/28 13/29 8/20 10/19 5/25 6/28 3/9 7/20 4/13 4/14 7/24 6/11 0.108 2.584

11: 6/16 4/13 14/23 4/13 8/23 11/24 16/25 4/20 4/21 4/11 4/14 8/17 11/19 0.141 4.069

12: 7/26 4/14 6/25 6/16 4/22 7/19 13/21 2/10 7/13 10/21 7/24 8/17 3/13 0.133 2.818

13: 5/13 14/23 14/24 6/13 15/23 6/13 4/14 5/19 2/18 11/17 6/11 11/19 3/13 0.170 4.347

averaged 0.122 3.427

Figure 6: The final freq25 resulting from freqR, shown in Figure 5. Taking in each ‘a/b’ only the a, we have the
final count25 resulting from countR, shown Figure 5.

9

